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Abstract

The objectives of this project are to develop a su/table validation data set for evaluating the

effectiveness of the International Satellite Cloud Climatology Project (ISCCP) algorithm for cloud

retrieval in polar regions, to identify limitations of current procedures and to explore potential

means to remedy them using textural classifiers, and to compare synoptic cloud data from model

runs with observations.

Toward the firstgoal,a polardatasetconsistingof visible,thermal,and passivemicrowave

data was developed. AVI-IRR and SMMR data were digitallymerged to a polar stereographic

projectionwith an effectivepizelsizeof (5 km) _. With thisdata set,two unconventionalmethods

of classifyingthe imagery for the analysisof polarclouds and surfaceswere examined: one based

on fuzzy setstheoryand anotherbased on a trainedneuralnetwork. Both were compared to the

maximum likelihoodprocedure and were found to provide additionalflexibilityin the analysisof

polarcloudsin thatthe inherentlyfuzzy boundariesbetween cloud and surfaceclassesin spatialand

spectralspace are acknowledged. However, limitationswith statisticalclassifierswere recognized,

and theneed fora more standardizedapproachbecame apparent.

An algorithmfor cloud detectionwas developed from an earlytestversionof the ISCCP

algorithm. This algorithmincludesthe identificationof surfacetypeswith passivemicrowave, then

temporal testsat each pixel locationin the cloud detectionphase. Cloud maps and clearsky

radiancecomposites for 5-day periodsare produced. Algorithm testingand validationwas done

with both actualAVHRR/SMMR data,and simulatedimagery. Accurate surfaceparameterization

and the temporal variabilityof pixelswere found to be crucialelements in the identificationof

polar clouds. From thispoint in the algorithm,groups of cloud pixelsare examined for their

spectraland texturalcharacteristics,and a procedureis developedfor the analysisof cloud patterns

utilizingalbedo,IR temperature,and texture. This procedureabandons the traditionalmethod of

griddingan image and classifyingthe gridcellsin favorof assigninga localtexturevalueto each
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pixel. 'I=ne spectral and textural characteristics are used in a supervised classification of mesoscale

(250 km) cloud patterns without artificially-imposed boundaries.

In a completion of earlier work, empirical analyses of arctic cloud cover were explored

through manual interpretations of DMSP imagery and compared to the US Air Force 3D-

nephanalysis. Results show that, because of limitations using only visible and thermal data, cloud

parameters computed over small geographic areas are subject to error but that broad climatological

features can be captured with these methods. Comparisons of observed cloudiness from existing

climatologies to patterns computed by the OISS climate model were also made. The GISS results

indicate that, while most of the cloud cover would appear to be due to large-scale processes, there

is some evidence that reduced ice concentration in summer may give rise to low-level cloud on a

limited regional basis.
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L Introduction

The climate of the polar regions is significantly influenced by the extent and thickness of

sea ice modulating the oceanic heat loss and surface albedo which, in turn, influence the global

climate via the ice-albedo feedback (Budyko, 1969; Sellers, 1969). Many studies have shown that

the polar climate, in turn, is sensitive to radiative forcing (e.g., Maykut and Untersteiner, 1971;

Robock, 1983). This is particularly true in the Arctic where the ocean surface is covered by sea

ice whose thickness depends on the radiative input from the overlying atmosphere. The major

influence on this input is cloud which is linked to the sea ice through a series of radiative,

dynamical, thermodynamic and hydrological feedbacks (Saltzman and Moritz, 1980; Shine et at.,

1984b; MacCracken et at., 1986). For instance, during the Arctic winter the presence of clouds

limits radiative cooling at the surface whereas in high summer the absence of stratus cloud

facilitates surface snow melt (Scharfen et al., 1987). Paradoxically, surface net radiation in the

cenu'al Arctic is greater for cloudy conditions than under clear skies, except in July (Herman, 1980;

Tsay et al., 1988; Serreze and Bradley, 1987). The radiative interactions with polar clouds and our

ability to monitor these clouds is therefore critical to understanding the climate of polar regions.

High latitude response to changes in cloud cover is a key area of uncertainty in evaluating

changes in the global climate system. To improve understanding of climate forcing, statistical

frameworks for describing the morphology of cloud fields as well as the radiative, dynamical, and

microphysical processes determining this morphology are needed (CGC, 1988, pg. 117). The

importance of Arctic cloud analysis to the International Geosphere-Biosphere Programme (IGBP) has

also been recognized (UCAR, 1988), and one of the program elements of the IGBP is to obtain

continuous and systematic observations of Arctic cloud cover from satellites.

1.1 Difficulties with Satellite Cloud Analysis in Polar Regions

The study of polar cloudiness and properties of the underlying surface using satellite data

such as that provided by the AVHRR encounters a number of significant difficulties thai influence



thereliabilityof cloud retrieval schemes. Some particularly relevant ones are:

(i) Low radiance contrasts between cloudy and clear scenes:

2

The small polar

(ii)

(iii)

(iv)

temperature lapse rates reduce the i_Lfrared radiance contrasts and the snow and ice

covered surface limit the solar reflection contrasts (Figure I). Thus the radiance

characteristics in polar regions require sensitive radiance analysis.

The complex surface property variations caused by changes in snow and sea ice:

Rapid small-scale variations in surface properties, particularly surface reflectance,

make it difficult to characterize cloud free scenes based on spatial and temporal

variability techniques.

The effect of haze on reflected and emitted radiances: The presence of optically

thick haze, especially during the spring in the Arctic, may obscure the pack ice and

conceal discernible surface features that might otherwise be used to determine the

absence of cloud layers (e.g., Shine et al., 1984a; Barry et al., 1988; Curry, 1988;

Curry et al., 1989a,b) or used in an automated retrieval scheme.

Complex non-linear relationship between radiances and cloud properties: The

differences in the angular variations of reflected sunlight between rough surfaces and

broken clouds and the occurrences of strong inversions produce complex effects on

these relationships. The utility of simple radiance difference techniques is doubtful

and cloud retrieval becomes a multi-valued problem.
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The impact of theseuncertaintieson cloud retrievalmethods willvary in degree according

to locationand season. However, some overallassessmentof theireffectson satelliteradiance

measurements is sorelyneeded. Since operationaldigitalimagery over the polar region is only

availablefrom polar orbitingmeteorologicalsatellitesof the NOAh, series,assessment of these

factorsin the contextof AVHRR might provideinsightto the solutionof theseproblems. We also

note,however, thatresultsmay alsobe applicableto existingDefense MeteorologicalSatellite
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Fig. 1. Relationship between AVHRR channels 1 and 3 (top) and 1 and 5 (bottom) for pixels
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LCL: low cloud). Data are based on training area statistics. Significant overlap between some

classes can be seen in both plots.
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Program (DMSP) satellites, and to sensors planned to be part of the Earth Observing System

(NASA, n.d.).

1.2 Objectives of this Project

'l'ne principal objectives of this project are

(1) to develop suitable validation data sets to evaluate the effectiveness of the

International Satellite Cloud Climatology Project (ISCCP) operational algorithm for

cloud retrieval in polar regions and to validate model simulations of polar cloud

cover:

(2) to identify limitations of current procedures for varying atmospheric surface

conditions, and to explore potential means to remedy them using textural classifiers;

(3) to compare synoptic cloud data from a control run experiment of the GISS climate

model II with typical observed synoptic cloud patterns. i

This report details the investigations that were undertaken to achieve these goals. Prior to

any specific analyses, a data set consisting of visible, thermal, and passive microwave data was

developed. With this data set, two unconventional methods of classifying the imagery for the

analysis of polar clouds and surfaces were examined: one based on fuzzy sets theory and another

based on a trained neural network. Recognizing the problems with statistical classifiers, the need

for a more standardized approach specific to the geographic area and data set became apparent. An

algorithm for cloud detection was developed from an early test version of the ISCCP algorithm for

the pixel-scale identification of clouds and surfaces. With cloud maps produced from this

algorithm, a procedure was developed for the classification of cloud pixels based on their spectral

and local textural characteristics for the analysis of mesoscale cloud patterns. Empirical analyses of

cloud cover were also explored through manual interpretations of DMSP imagery and comparisons

to the US Air Force 3D-nephanalysis. Finally, comparisons of observed cloudiness and synoptic
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pressure patterns to those generated by the GISS model are also made. Each of the following

sections gives a brief description of these research topics, and refers to the attached papers for

additional detail.

2. Data

A data set has been developed that combines digital AVHRR and Nimbus-7 SMMR passive

microwave data. This data set serves as the principal source for radiance measurements in

algorithm development. Data includes all AVHRR channels (1: 0.58-0.68pm, 2: 0.73-1.0pm, 3:

3.55-3.93pm, 4: 10.3-11.3ttm, 5: 11.5-12.5pm), as well as channel 3 albedo (approximated).

AVI-IRR data are initially of the Global Area Coverage (GAC) resolution (3x5 ian), and are part of

an ISCCP test data set. Data are available for January 6-13, 1984 and July 1-7, 1984 covering

both the Arctic and Antarctic regions.

The Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) measures in five

channels: 6.6, 10.7, 18.0, 21.0, and 37.0 GHz. Vertical and horizontal polarizations are available

for each channel. Sea ice concentration and ice type are calculated from SMMR data using the

operational NASA Team algorithm. A simple gradient ratio threshold is included to reduce the

effects of ocean surface spray and foam on ice concentration estimates.

The AVHRR data are merged with the SMMR data onto a polar stereographic projection

with a grid cell size of 5 km at 70 _ N latitude. The data merging procedure is given in

Attachment 1.

Visible (0.4-1.1pm) and thermal (10.5-12.51an) imagery from the DMSP - a near-polar

orbiter with a resolution of 2.7 km for orbital swath format images - is used for manual

comparisons of cloud type and amount and surface conditions in cloud-free areas. Other ancillary

data include pressures and temperatures from the European Cenlie for Medium Range Forecasting

(ECMWF) and sea ice albedo from Scharfen et al. (1987) which are derived from a combined

interpretationof DMSP imagery and the NOAA/Navy icecharts.
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In order to test the sensitivity of the various cloud algorithms, a control data set with

known characteristics is needed. A synthetic data set has been developed which consists of seven

days of AVHRR data (channels 1, 3, 4), three days of SMMR brighmess temperature data (every

other day; 18 and 37 GHz vertical polarization), SMMR-derived sea ice concentrations, and a land

mask. Surface types are snow-covered and snow-free land, open water, and sea ice. Ciond layers

are classified as low, middle, and high, where levels are defined by AVHR_ channel 4

temperature& Data are based on class characteristic means and standard deviations computed from

training areas. Synthetic data sets are described in Attachment 4.

Three areas of the Arctic are examined (Figure 2). One area is centered on the Kara and

Barents Sea extending north to the pole and south to Norway and the Siberian coast. The second

area covers most of the Canacl_iarl Archipelago and Greenland, and extends north to the pole. The

third area extends from the coast of Norway to Ellesmere Island. A seven-day summer series of

areas 1 and 2, and a winter series of area 3 were examined. While covering only one-third of the

Arctic Basin, they include representative samples of all surface types found in the Arctic: snow-

covered and snow-free land, sea ice of varying concentrations, open water, and permanent ice cap.

In fact, these areas during the July period present particularly difficult conditions for cloud

algorithms to work with; sea ice is moving, snow is melting and ponds form, and the extensive

coastlines exhibit mixed temperature regimes.

3. Cloud Detection Algorithms

Several objective methods exist for mapping cloud cover using satellite radiance

measurements. Among these are methods that utilize statistical approaches (e.g., Coakley and

Bretherton, 1982) and pattern recognition techniques (e.g., Harris and Barrett, 1978; Chin et al.,

1987 and others). Other approaches are based on physical relationships determined from some form

of radiative transfer Jcheme (Reynolds and Vonder Haar, 1977; Arking and Chtlds, 1985; Wu,

1987).
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1 amd 2; in area 3 winter data (January 6-13, 1984) were employed.
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These methods, which are principally based on the use of visible and infrared radiances,

generally fail in the polar regions as a result of the problems listed in Section 1. However, the

spectral differences of ice, snow and clouds under various conditions permit the use of multichannel

techniques to separate clouds from ice and snow covered surfaces. Of particular interest is the

potential of existing channels on the AVHRR for this purpose. Near infrared radiances have been

used in the methods of Arking and Childs (1985), Wu (1987), Key et at. (1989a,b), and Key and

Barry (1989). These radiance dam demonstrate great potential for differentiating the phase of water

in clouds and the underlying surface. A better understanding of the wavelength variations of the

albedo and emissivity of snow and ice-covered surfaces and of the overlying clouds of different

microstrncture as well as an assessment of the effects of large zenith view angles are all important

considerations for polar cloud studies.

Although the AVHRR provides data in a wide range of channels, which collectively provide

the ability to distinguish between surface and cloud types, the question remains of how to take

advantage of this information in the development of a cloud detection algorithm. We investigate

this problem through clustering and classification procedures, spatial and temporal coherence, and

the basic methodology followed in the ISCCP algorithm.

3.1 Classification of Clouds and Surfaces with Fuzzy Sets

Where spatial boundaries between phenomena are diffuse, classification methods which

construct mutually exclusive clusters seem inappropriate. The Fuzzy c-means (FCM) algorithm

assigns each observation to all clusters, with membership values as a function of distance to the

cluster center. The FCM algorithm is applied to AVHRR data for the purpose of classifying polar

clouds and surfaces. Careful analysis of the fuzzy sets can provide hxformation on which spectral

channels are best suited to the classification of particular features, and can help determine likely

areas of misclassification. The ability of the fuzzy sets approach to address indistinct spectral

classes by calculating class memberships as opposed to the "in-or-out" decision required of hard

....d
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classifiers is particularly well suited to the range of albedos and physical temperatures encountered

in the analysis of ice and cloud in the polar regions.

Application of the fuzzy sets classifier to an AVHRR image containing sea ice and cloud of

varying condition and opacity yielded ten membership sets containing contextually and statistically

unique information. Interpretation of intensities in images of these sets demonstrates the ability of

the fuzzy sets to describe well-defined classes (such as open water and land) as well as classes that

fall in intermediate spectral space (e.g., ice cap, thin stratus over water, or sea ice of varying

concentration). Identification of such fuzzy areas in taxonomic space provides information on

classes where data in additional spectral regions are required for accurate classification. Future

work will use the fuzzy sets approach as a tool to help "tune" hard classifiers such as

unsupervised clustering and bispectral threshold methods for cloud and ice mapping in the polar

regions. General agreement in the classes identified, as well as cloud fraction, was found between

the FCM algorithm, a manual classification, and an unsupervised maximum likelihood (ML)

classifier. See Attachment 2 for additional detail.

3.2 Classification of Clouds and Surfaces with Neural Networks

A similar study to that with the fuzzy sets procedure was carried out using a trained neural

network to classify a combined AVHRR/SMMR multispectral image. Again, the goal was to

examine the advantages and disadvantages of a methodology which allows for fuzzy boundaries in

both spatialand spectralspace. Four surfaceand eightcloud classeswere examined: snow-free

land, mow-covered land/icecap, open water,and sea ice;low cloud over land,water,and ice;

middle cloud over water and ice;and high cloud over land, water,and ice. The dala were

classifiedby two procedures:a neuralnetwork and a maximum likelihoodclassifier.The maximum

likelihood procedure is supervised, initially using the same training areas as used to Irain the neural

network. The neural network approach to classification is generally less rigid than the traditional

maximum likelihood procedure in that 1) there are no assumptions of distributions of variables and
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relationships between them, 2) the network is easily lrained to learn the relationships between input

and output, and 3) the classification produces both a categorical value and a type of membership

value for each pixel. It is recognized that there is some loss of information and interpretability

with the departure from statistical theory. Additionally, computation time required for training the

network is not trivial when compared to the training of the ML classifier (i.e., computation of mean

vectors and the covariance matrix), although future hardware architectures should alleviate this

problem.

Both numeric and the numeric/symbolic neural network designs were implemented and both

extracted correct information from the multispectral images. The differences between the neural

network and supervised maximum likelihood classifications were primarily due to the greater

flexibility of the neural network to classify indistinct classes, e.g., classes containing pixels with

spectral values that differ significantly from those in the training areas, while ignoring assumptions

of statistical normality. The two classification approaches illustrate the Wadeoffs between human

interaction in the selection of training areas and classification accuracy and flexibility. Flexibility

similar to that shown by the neural network might be achieved using a maximum likelihood routine

by manipulating class membership probabilities and/or by adjusting probability thresholds to relax

the membership requirements for individual classes. Such steps would require an a priori

knowledge of probabilities and may increase classification error.

The ability to interpret weights within the trained network provides a potentially powerful

tool for understanding the role of inputs and the geophysical processes they represent in the making

of decisions. Through an examination of the connection strengths between input, hidden, and

output units, it is possible to identify which inputs influence the classification most, and which are

redundant. These relationships are not always clear, and care must be taken in extending their

interpretation to physical processes. We emphasize that the data and applications of interest for

remote sensing of polar climate is not typical of applications such as land cover mapping, which

may be limited to a single image covering relatively small areas with small within-class variance.
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This studydoesnot show whethera neuralnetworkoffers any advantagesfor the latter type of

analyses.The meritsand drawbacksof a neuralnetworkapproachrelativeto othersmust therefore

be considered based on the particular problem at hand.

3.3 Cloud Detection with Spatial and Temporal Coherence

Clear sky radiance relrieval was examined from the point of view of the spatial and

temporal coherence of pixel radiances in AVHP_ data. These two methods were then combined

into a spatiotemporal coherence analysis method for the determination of clear sky radiances. In all

three procedures the basic assumption is that clear sky areas exhibit low spatial and/or temporal

structure; i.e., a group of contiguous pixels will, if each is clear, have a low standard deviation.

Since visible data are not available during the polar winters, the coherence tests are based on

thermal data (AVHRR channel 4) only.

With single-layer, single surface image regions, a plot of cell means against their standard

deviations reveals a characteristic arch-shaped distribution where a cluster of points with low

deviations indicates clear sky, and another cluster also with low deviations but lower mean

temperature indicates cloud-covered areas (Coakley and Bretherton, 1982). These areas exhibit a

high degree of spatial coherence. Between these two "feet" are areas with intermediate temperatures

and greater variability which can be interpreted as partially cloud-filled fields of view. The

assumptions are that only one surface type and one cloud layer are present, and that the cloud is

colder than the surface.

In the Arctic, these assumptions are seldom realized, and with isothermal and inversion

conditions common, difficulties occur in determining which foot (or feet) of the arch correspond to

clear sky cells. Figure 3 illusUrates the spatial coherence method as applied to a (250 ian) _ region

for each of four consecutive days. The problem of multiple surface types and cloud layers is

apparent. To aid further in the determination of clear sky radiances, locations may be examined for

their variation in time. Scenes which do not vary significantly from the day before and the day
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after are assumedto be clear, althoughstationarycloud decks will exhibit similar temporal

coherence. Figure 4 illustrates the temporal coherence of cells for the same period as in the

spatial coherence plots, determined for days 1-3 and 2-4. The first plot in the figure clearly

identifies the open water surface (278 K), and also shows the land surface (285 K). In the second

3-day period, land is not evident in the plot.

Spatial and temporal coherence tests were combined for the purpose of identifying which

feet of the spatial coherence arch represent clear sky conditions. Results indicate that spatial and

temporal tests in combination provide an effective method of identifying clear sky conditions,

although requiring low spatial and temporal variability may miss some clear pixels. This

information has proven useful in the development of an algorithm that includes spatial and temporal

tests, such as that based on ISCCP methodology, described next.

3.4 Cloud Detection Following an ISCCP Methodology

The ISCCP, which began its operational data collection in July 1983, aims to compile a

global climatology of cloud cover, cloud top height as pressure and cloud optical thickness. This is

to be achieved by using imaging measurements of geostationary satellites which cover the globe

from latitudes from 600N to 60°S. The regions poleward of these latitudes are observed by the

polar orbiting NOAA satellites with the AVHRR imager. However few studies have attempted to

use these observations to derive cloud properties over the predominantly snow- and ice-covered

polar regions. As a basis for developing the ISCCP algorithm, Rossow et al. (1985) compared six

cloud algorithms. However, the algorithms were not compared in the polar regions, and a separate

study was organized to focus specifically on polar cloudiness (WMO, 1987). In 1990, a joint

workshop of radiation/cloud experts, atmospheric modelers, and polar scientists will be organized to

examine (1) advances in mapping the surface radiation fluxes over the polar region, (2) the impact

of uncertainties in the determination of the time- and space-dependent downward radiation flux on

the prediction of the sea ice field, and (3) the quality of model-derived surface radiation fluxes over
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ice andtheir validationagainstobservations(WMO, 1988).

The currentISCCPalgorithmis composedof a series of steps, each of which is designed to

detect some of the clouds present in the scene. The general idea in cloud detection is first to

isolate the less variable clear scene radiances in the data and then identify the clouds by their

alteration of these radiances (compare to Rossow et at., 1989a). In the basic algorithm, spatial and

temporal variation are used in the detection of clear pixels; clear sky composite maps (over five

day periods) are then constructed. Finally, each pixel is compared to the clear sky radiances to

determine if cloud is present. It has been recognized that reliable detection of cloudiness in the

polar regions with the current ISCCP algorithm is particularly difficult, and it has been

recommended that the study of clouds over polar regions be continued (WMO, 1988).

This algorithm is applied to Arctic data for January and July conditions. Both AVHRR and

SMMR data are utilized. Synthetic AVHRR and SMMR data for a seven-day analysis period are

also generated to provide a data set with known characteristics on which to test and validate

algorithms. Modifications to the basic algorithm for polar conditions include the use of SMMR and

SMMR-derived data sets for the estimation of surface parameters, elimination of the spatial test for

the warmest pixel, the use of AVHRR channels 1 (0.7ttm), 3 (3.7pun), and 4 (llttm) in the

temporal tests and the t'mal multispeclral thresholding, and the use of surface class characteristic

values when clear sky values cannot be obtained. Additionally, the difference between channels 3

and 4 is included in the temporal test for the detection of optically thin cloud. Figure 5 illustrates

the basic steps of this algorithm. Greatest improvement in cloud fraction computed by the modified

algorithm is realized over snow and ice surfaces; over open water or snow-free land, all versions

perform similarly. Since the inclusion of SMMR for surface analysis and additional spectral

channels increases the computational burden, its use may be justified only over snow and ice-

covered regions.

The original algorithm, its modification, and testing are described in more detail in

Attachments 4 and 5.
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4. Analysisof CloudPatternswith Spectraland Textural Measures

High latitude response to changes in cloud cover is a key area of uncertainty in evaluating

changes in the global climate system. To improve understanding climate forcing, statistical

frameworks for describing the morphology of cloud fields are needed. Major uncertainties exist in

current cloud climatologies for polar regions as a result of the problem of discriminating clouds

over snow and ice using satellite visible or infrared data. This problem of cloud detection was

addressed in the previous section. A methodology for analyzing cloud patterns is presented in this

section.

Simulated AVI-IRR GAC imagery and tests of spatial coherence indicate that in the

traditional method of gridding an image, computing spectral and textural features for each cell, and

then classifying the cells, those cells small enough to retain a high degree of spatial coherence may

be too small to measure texture adequately in the data set. Our method begins with cloud detection

on the pixel scale as described in Section 3.4. From this point, two methods of cloud pattern

analysis are presented. In one case, simple measures are used to describe cloud types which occur

in (250 kin) _ regions with artificially defined boundaries. Such parameters as cloud fraction at three

levels, cloud connectivity, and Fourier measures of cloud structure within the regions are computed.

These descriptors may be useful for applications which require gridded data; e.g., in climate models.

The second method is presented as an attempt to eliminate the problems inherent in

analyses which impose artificial boundaries on cloud and surface patterns, that being the mixture of

different classes within a single cell. Rather than compute texture for each cell in a gridded image

and then cluster the grid cells, here texture is determined for each pixel. The value assigned to the

pixel is the mean texture value computed for all cloudy cells to which it belongs. Cloud pixels are

then classified by their spectral and textural features following a maximum likelihood procedure.

This procedure is shown in Figure 6.
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This methodology differsfrom otherswhich have incorporatedcloud textureanalysesin two

important ways: only the cloudy pixels are examined (surface pixels are identified in the cloud

detection step), and texture values are assigned to each pixel rather than to a grid cell. In this

manner, training classes can be defined based on texture, and do not need to include mixtures of

cloud and/or surface classes. However, the subjectivity inherent in defining cloud types makes an

objective assessment of the accuracy of the results difficult. This problem is compounded in the

test data, where cloud systems are complex. The spectral and textural measures are determined for

the five surface classes defined previously, and for twelve cloud classes which include some of the

basic cloud groups and mixtures of these as observed in the data:

I. Low thin cloud over water (stratus);
2. Low thin cloud over ice (slratus);
3. Low thin cloud over land (stratus);
4. Low thickcloud, smooth texture (stratus);

5. Low thick cloud, bumps or broken (stratocumulus);
6. Middle cloud rolls (broken, linear altostratus usually over a stratiform layer);
7. Broken middle cloud, not linear;
8. Middle thick cloud, smooth (altoslratus, possibly over stratus);
9. Middle/high bumps (cirrocumulus or altocumulus);
10. High thick cloud with some middle cloud (broken cirrostratus over altostratus);
11. High thick cloud, smooth (cirrus or cirrostratus);
12. Cumulus.

The surface was included in classes 1-3 only because the clouds are thin and differed primarily in

albedo. Contributions from surfaces to cloud albedo or temperature in the other classes were not

significant enough to justify defining additional classes. Class 7 is similar to class 6, but occurred

at a higher level. Correlation between specWal and textural features and the discriminatory

capability of each indicates that spectral features are most useful in discriminating between polar

surface and cloud classes but that a few texture measures, such as angular second moment, vector

strength, entropy, and standard deviation, relrieve slructural information of clouds.

A test case resulted in 68% of the cloud pixels being correctly classified when compared to

a manual interpretation, although no redefinition of classes or training areas was done to improve

this figure. Ehert (1987), in a classification study utilizing fixed grid texture measures on AVHRR
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imagery,was able to achieve84% classificationaccuracy. However,becauseof the fixed grid

procedure, some of the classes were defined as mixtures of surface and/or cloud types.

Additionally, an iterative procedure was used to optimize the _vaining set and the classification

algorithm. Therefore, a direct comparison between these two procedures is not appropriate.

The classification results indicate that, as expected, cloud fields are organized into

recognizable mesoscale morphologies. An analysis of cloud morphology may in turn give some

indication of the physical state of the atmosphere. A detailed examination of the relationship

between cloud patterns and synoptic variables requires greater spatial coverage than examined here,

as well as a procedure to correlate the cloud patterns to other meteorological data sets. The

development of such a procedure is the subject of future research. Additional details are given in

Attachment 6.

$. Empirical Studies of Arctic Cloud Cover

The cloud regime over the Arctic Ocean is highly seasonal, with total average cloud cover

varying from 40-60 percent in winter to 70-80 or 90 percent in summer (Huschke, 1969; Vowinckel

and Orris, 1970) and a rapid increase from April to May. Geographically, low level cloud in July

increases poleward of the Eurasian coastline from about 55-60 percent to an estimated 90 percent

around 85°N, 90°E, according to Voskresenskiy and Chukanin (1959). Vowinckel and Orvig (1970)

show a similar pattern. However, these two sources differ markedly in their display of low level

cloud frequencies in winter. This type of discrepancy highlights our limited knowledge of even

mean Arctic cloud conditions, and the need to derive more reliable long term statistics on Arctic

cloud cover.

Attachment 7 describes the results of three independent satellite-based analyses of Arctic

cloud conditions for selected periods in spring and summer. Cloud cover maps were prepared using

two manual analyses and a 3D-nephanalysis (automated algorithm) to identify and classify cloud; all

methods utilized DMSP images. A comparison of the cloud information produced by these
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methods shows that they are capable of capturing broad climatological features of the cloud cover.

For example, the results suggest that in the early part of the spring-summer season cloudiness is

strongly influenced by weather systems. The melting of snow cover on the Arctic sea ice is also

associated with synoptic weather system activity. However, small-scale parameters such as cloud

fraction are subject to error with these methods due to surface effects and the difficulty of

discriminating cloud from suow/ice surfaces. It appears that visible and thermal infrared data are

insufficient for cloud mapping over some Arctic surfaces on the small scale. This was also shown

to be the case with AVHRR data as described in Attachments d and 5.

6. Comparison of Modeled and Observed Cloud Cover in the Arctic

A component of a previous NASA project (NAG-5-417) was the analysis of model output

from a control run of the Goddard Institute for Space Studies (GISS) general circulation model

(Hansen et at., 1983). Five-day pressure fields were classified by the same objective procedure

used for the observational data (also for 5-day intervals) and the synoptic variability compared.

Overall, the GISS model displays realistic regimes and appropriate seasonal distributions of the

principal MSL pressure patterns (Crane and Barry, 1988).

In this project, the GISS model was used to predict cloud cover in the Arctic. Monthly

average cloud fractions calculated by the GISS model were evaluated in terms of temporal and

spatial distributions, and were compared to observed cloud amounts. The GISS model cloudiness in

the Arctic was found to demonstrate the seasonal variability expected based on observational data,

but at a much reduced range in the central Arctic. As with the observational data, the zone of

maximum cloud cover moves north in the summer, but the calculated amounts are less than

expected by about 10-20%. The GISS results indicate that, while most of the cloud cover would

appear to be due to large-scale processes, there is evidence that reduced ice concentration in

summer may give rise to low-level cloud on a limited regional basis. Attachment 9 provides

additional details.
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7. ConcludingRemarks

The fuzzysetsandneuralnetworkclassificationmethodshaveprovidedvaluableinsightinto

the needfor a multispectral approach to cloud detection, and have made clear the ambiguities

encountered during the classification process that occur in both spatial and spectral dimensions.

This has also been verified by manual interpretations of DMSP imagery. Through spatial and

temporal coherence tests, most of this ambiguity can be resolved. This is particularly true ff there

is knowledge of the types of surfaces and how they are changing underneath the cloud cover -

information that can be obtained from the combined AVHRR/SMMR data set.

These investigations provided the impetus to develop a cloud detection scheme utilizing

spatial, temporal, and multispectral characteristics of polar clouds and surfaces, as well as surface

information. In recognition of the need for a "standardized" procedure, the algorithm follows the

basic steps of that used by the ISCCP. The process has been taken even further, where a

methodology has been developed for the recognition of mesoscale cloud patterns based on their

spectral and textural features. Although additional refinement of the algorithms is still needed, the

groundwork has been laid for producing maps of surface and cloud extents, changes, temperatures

and albedos, and cloud patterns from polar satellite data.

8. Future Research

Continued work on polar cloud analysis is planned, and a research proposal involving both

empirical and modeling studies has been submitted to NASA. Our proposed tasks are to (i) employ

radiative transfer and empirical, statistical analyses of satellite-derived data in a coordinated,

symbiotic manner to refine our understanding of polar clouds and radiation, (ii) use this information

to investigate the potential of AVHRR data in detecting clouds and measuring cloud properties over

both polar regions, (iii) further assess the utility of other correlative data, e.g., passive microwave

SMMR and SSM/I data, snow cover information, DMSP imagery, along with AVHRR information

in cloud retrieval, (iv) investigate the feasibility of using passive microwave data to estimate surface
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temperaturesover sea ice consideringatmosphericeffects, ice types, and snow/ice thermal

conductivity,(v) assessthe effects of haze and ice microphysics on the radiances of AVHRR

wavelengths, (vi) utilize this information for the development of a polar-specific cloud detection and

mmlysis algorithm which is expected to follow, at least initially, the major steps of the current

ISCCP algorithm. Although emphasis is being placed on passive microwave data from the SMMR,

data from the SSM/I instnunent on board the DMSP satellites will also be examined. In particular,

the 85 GHz channel will be investigated for its potential in cloud detection. SSM/I data are

currently being archived at the National Snow and Ice Data Center (Weaver et al., 1987).

Following the further refinement of the cloud detection algorithm, we intend to apply it and

some form of the cloud pattern analysis procedures described in Section 4 to a longer time series

(e.g., one year, or a single season over a number of years) of AVHRR data for the purpose of

compiling a comprehensive set of cloud and surface statistics. With this information, the

relationship between cloud morphology and synoptic variables such as pressure and winds can be

examined.
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Merging AVHRR and SMMR data for remote sensing of ice and cloud

in polar regions
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Abstract. Muitispectral data from the Advanced Very High Resolution Radio-
meter (AVHRR) were digitally processed and merged with Scanning Multichannel
Microwave Radiometer (SMMR) imagery. Five channels of AVHRR data. four
channels of SMMR brightness temperatures and SMMR-derived ice concen-
tration and ice type were co-registered to a polar stereographic grid. The merged
data sets are currently being used in combination with meteorological information
for integrated studies of clouds and sea ice.

1. Introduction

The important role that polar processes play in the dynamics of global climate is

widely recognized (Polar Research Board 1984). Remote-sensing of the distribution

and characteristics of clouds and sea ice is required to monitor climate variability in

the Arctic and Antarctic, as well as to provide input to global climatic models.

Optical-wavelength sensors can provide data with a high spatial resolution but are

limited by the long periods of winter, darkness poor lighting conditions and persistent

cloud cover common in polar regions. Passive microwave sensors operate independ-
ently of solar illumination, can view the surface through cloud cover and provide

surface information not contained in visible or thermal infrared imagery. However,

existing passive microwave sensors yield data with a relatively poor spatial resolution.

A combination of digital multispectral data appears to be a logical way ofcapitalizing
on the unique capabilities of each group of sensors, while overcoming some of the

problems inherent in remote sensing at high latitudes. Comparison of data from these

two sensor groups has been undertaken previously by Choudhury et al. 1987) for

vegetation studies and d'Entremont and Thomason (1987) for cloud analysis. This

work describes a set of merged digital data consisting of visible, near-infrared and

thermal infrared imagery from the Advanced Very High Resolution Radiometer

(AVHRR) and passive microwave imagery from the Scanning Multichannel Micro-
wave Radiometer (SMMR) combined into a form suitable for the analysis of cloud
and sea ice cover.

2. AVHRR and SM.MR data

The AVHRR sensors carried on board the NOAA-7 satellite sample the Earth

in five spectral channels (0-58-0.68tJm, 0-725-1.0/_m. 3-55-3.93gm, 10-3-1 l-3.um.
11.5-12.5/_m), with a nadir resolution of" 1-1 kin. Partial orbits of Global Area

Coverage (GAC) data (which is a reduced-resolution product crealed through

on-board satellite processing to yield a nadir resolution of 3 km× 4kin for

6-13 January and I-7 July. 1984 are used in this study. The imagery covers areas in



2 J.A. Maslanik et al.

the Arctic.with a permanent ice cap, snow-covered and snow-free land, sea ice and

ocean, and a variety of cloud types over each of these surfaces.

First-order calibration of the AVHRR GAC data was performed using the

calibration coefficients contained in the image files and the methods described in the

NOAA Polar Orbiter Users Guide (NOAA 19841 and in Lauritsen et al. (1979). The

data values recorded in channels 1 and 2 were converted to spectral albedo in per cent,
and channels 3-5 were converted to radiance in milliwatts/(m-'-steradians-cm), then

to brightness temperature in Kelvin using an approximation of the inverse of the
Planck function. The percentage reflectance values produced for channels I and 2 by

this method are only approximations of aibedo and so care is required when

comparing these values to broad-band aibedos sensed over a wider spectral range
(Shine et aL 1984).

To mitigate for the effects of solar zenith angle differences along the wide swath of

AVHRR, channels 1 and 2 were normalized by dividing the pixel value by the cosine

of the solar zenith angle for that pixel as provided in the GAC data records. Since

only one zenith angle is given per eight data pixels, the intermediate zenith angles were

interpolated linearly. Under the assumption that atmospheric effects can be neglected

due to the typically low water vapour content and low temperatures in polar
atmospheres, no other adjustments for these effects were made.

A final step in the AVHRR data correction involved extracting the reflected-

energy component from the emitted component in channel 3. Brightness tempera-

tures estimated from channel 4 were converted to expected radiances for channel 3

using an inverse calculation of the Planck approximation with channel 3 parameters
(the assumption is that emissivity of the surface is constant in these two channels).

Subtraction of these radiances from the actual radiances measured in channel 3 yields

the component of energy in channel 3 attributable to reflection.

Passive microwave data used in this study were acquired on 6, 8 and 10 January

and 2.4 and 6 July t984 by the SMMR on Nimbus 7 (Gloersen and Barath 1977). The
SMMR collects data in five microwave channels (6.6GHz, 10.7GHz, 18.0GHz.

21-0 GHz and 37-0 GHz), with horizontal and vertical polarizations for each channel.

The instantaneous field of view of the sensor varies with channel, ranging from
148 km x 95 km for the 6-6GHz channel to 55 km x 41 km and 27 km x 18 km for the

18GHz and 37GHz channels, respectively. The data stored in these grids are

recorded as brighm_ss temperature in Kelvin. No distinction is made between day.

night and twilight orbits and data from overlapping orbits are averaged to yield a

daily value. SMMR data mapped to polar stereographic grids and archived in the
Cry ospheric Data Management System (CDMS) of the National Snow and Ice Data
Center.

3. Combining AVHRR and SMMR data

Merging of the AVHRR GAC and SMMR data required selection of a common

grid size that offered a compromise between spatial resolution and data volume. A

polar stereographic projection yielding equal-area pixels true at 702 latitude was

selected as the desired map base, with a 5 km grid cell (pixel) size. This pixel size
represents a slight degradation of the AVHRR GAC spatial resolution but has the

advantage, in terms of data processing, of being an even multiple of SMMR
25 km × 25 km cells used in the CDMS archive. The SMMR data were converted to

5 km cell sizes by simple duplication of pixels, thereby avoiding any artificial increase

in spatial resolution. Sea ice concentration and old ice fraction were calculated from
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the SMMR data using the NASA Team Algorithm (Cavalieri et al. 1984). This

algorithm is based on the normalized difference between vertically- and horizontally-
polarized emissivity at 18GHz and the normalized difference between vertically-

polarized data at 18 GHz and 37GHz.

Nearest-neighbour remapping of the AVHRR data to the polar projection was

performed using the ground locations, in latitude and longitude, provided in the

GAC records. Since locations are provided only at every eighth pixel, coordinates

for the intermediate pixels were interpolated linearly and transformed from

latitude/longitude to polar grid coordinates using standard map projection routines,

Unfilled grid cells were interpolated by an average of non-zero neighbours. The

reduction in ground resolution at the edges of the orbit swath due to the Earth's

curvature is handled by pixel duplication so that the grid cell size remains constant
across the rectified polar-stereographic image. No adjustments were made to compen-

sate for viewing angle dependencies, as one of the goals of creating this data set is to

investigate these effects. Accuracy of the AVHRR navigation using this method is

expected to be within 25 km, roughly corresponding to an individual SMMR pixel.

4. An application

Examples of a calibrated and registered AVHRR channel I image, centred

approximately on Novaya Zemlaya (7YN, 60°E), and covering the Kara and Barents
Seas (figure 1), and SMMR 37GHz data for the same area (figure 2) illustrate the
differences in resolution and information content between the two sensors. The

colour-composite of AVHRR channels 1 and 4 plus SMMR-derived ice concentra-

tion shown in figure 3 demonstrates the ability to map ice concentration and ice edge

position beneath cloud cover.

The merged AVHRR_SMMR data sets are proving useful for a variety of

applications that benefit from near-simukaneous observations of clouds andd sur-

faces. These data are being used to determine the spectral and textural properties of

Figure 1. Calibrated and registered AVHRR channel I image centred approximately on
Novaya Zemlaya and covering the Kara and Barents Seas.
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Figure 2. SMMR 37GHz horizontal polarization data for the same area shown in figure 1.

ctouds over snow-covered and snow-free land, permanent ice cap, open water and

different concentrations and conditions of sea ice as part of a continuing effort to

adapt the International Satellite Cloud Climatology Project (ISCCP) algorithm
(Rossow et al. 1985) for use in polar regions. The combined data sets allow spatial

and temporal thresholds to be chosen based on surface conditions and have shown

that the surface often changes within the time periods over which the ISCCP

algorithm operates. This situation is illustrated in figure 4, which consists of cloud

Figure 3. A composite of AVHRR channels I and J,. and SMMR-derived ice concentration

for the areas shown in figure 1.
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erived ice COnCentratlorl

Figure 4. Cloud cover and surface types of a single day and surface types for the same area
five days later. Area covered is (1500km-'). The combined AVHRRiSMMR data set
provides for the mapping of cloud over varying surfaces, as shown here for charting ice
extent north-east and south of Novaya Zemlaya.

mapped with the AVHRR data and surface types identified using SMMR (18 GHz

and 37 GHz) and SMMR-derived sea ice concentrations. Cloud cover and surface

types are shown for the first day of the seven-day analysis period. Surface types are

again shown for the sixth day. The change in ice extent to the north-east and south of
Novaya Zemtaya. and the associated change in surface albedo and temperature that

will limit the applicability of the ISCCP algorithm in areas with snow and ice cover•

5. Conclusions

The ability to retrieve information on albedo, physical temperature and brightness

temperature from spatially and temporally co-located imagery is proving to be a

useful aid in comparing the spectral and textural properties of ice and clouds in a
broad range of the energy spectrum. The merged data sets capitalize on the unique

capabilities of AVHRR and passive microwave data by reducing the inherent

limitations of each sensor and provide a means to improve automated cloud mapping
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in polar regions, Other applications include analysis of directional reflectance and

emittance differences, the investigation of the relationship between SMMR-derived

ice concentration and AVHRR-measured albedo, comparison of ice concentration

and ice-edge position as estimated by AVHRR and SMMR and comparison of

AVHRR-derived temperatures with temperatures estimated from SMMR, Future

work will investigate the utility of passive microwave data merged with the Level B3

AVHRR product to be archived as part of ISCCP (Schiffer and Rossow 1985) and

will assess the potential contribution of such merged data sets to extend the time

period of multisensor data available from SSM/I and OLS on DMSP platforms and

sensor combinations proposed for the Earth Observing System (EOS).
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Abstract. Where spatial boundaries between phenomena are diffuse,

classification methods which construct mutually exclusive clusters

seem inappropriate. The Fuzzy c-means (FCM) algorithm assigns each

observation to all clusters, with membership values as a function

of distance to the cluster center. The FCM algorithm is applied

to AVHRR data for the purpose of classifying polar clouds and

surfaces. Careful analysis of the fuzzy sets can provide

information on which spectral channels are best suited to the

classification of particular features, and can help determine

likely areas of misclassification. General agreement in the

resulting classes and cloud fraction was found between the FCM

algorithm, a manual classification, and an unsupervised maximum

likelihood classifier.
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1. Introduction

Cloud detection and classification from satellite remote

sensing data has received considerable attention in view of the

significance of cloud cover for global climate. Various techniques

are reported in the literature based on threshold, bispectral, 2-

d or 3-d histograms, and split-window methods. Smith (1981) and

Crane and Barry (1984) summarize these procedures. From a

classification standpoint, most current approaches seek to

designate mutually exclusive classes with well defined boundaries;

these are termed "hard" classifications. Clustering algorithms

used in such classifications are commonly based on either the

Euclidean distance measure (e.g., Parikh 1977; Desbois et al. 1982)

or the maximum likelihood classifier (e.g., Bolle 1985; Pairman and

Kittler 1986; Ebert 1987). Areas where cloud identification is

uncertain are usually treated by forcing them into existing

classes, or leaving them unclassified.

Our particular interest in cloud conditions in polar regions

indicates that this approach is especially undesirable where the

spectral characteristics of the clouds and the underlying surface

frequently overlap. Where cloud categories are poorly defined and

the spatial boundaries between them are diffuse, it seems

appropriate to represent this uncertainty in the taxonomic

strategy.
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The purpose of this study is to examine the applicability of

the fuzzy sets approach to the classification of clouds from

satellite data. In contrast to hard classifiers, the fuzzy sets

approach assigns each observation to every class, with the strength

of the membership being a function of the its similarity to the

class mean. Fuzzy clustering was introduced by Ruspini (1969) and

was later developed into the fuzzy c-means algorithm by Dunn (1974)

and generalized by Bezdek (1975). Previous applications of the

procedure to climatic data are limited to McBratney and Moore

(1985) where the fuzzy c-means algorithm was applied to temperature

and precipitation data, and Leung (1987) who took a linguistic

approach to describing the imprecision of regional boundaries.

There has been an increasing use of fuzzy set theory and fuzzy

algorithms with digital images (e.g., Huntsberger et al. 1985, Pal

and King 1983), but these procedures have not yet found their way

into satellite data processing applications. We do not intend to

present new information on cloud characteristics, but rather to

provide an alternative method of dealing with the poorly defined

boundaries of clouds and surfaces in satellite data.

2. Data

The AVHRR (Advanced Very High Resolution Radiometer) on board

the NOAA-7 polar orbiting satellite is a scanning radiometer that

senses in the visible, reflected infrared, and thermal (emitted)

infrared portions of the electromagnetic spectrum with a nadir

resolution of i.i km (IFOV of 1.4 milliradians) at a satellite
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altitude of 833 km. Global Area Coverage (GAC) data provide a

reduced-resolution product created through on-board satellite

processing. GAC pixel resolution is used, with each pixel

representing a 3 x 5 km field of view. Of the five channels

available (0.58-0.68 _m, 0.725-1.00, 3.55-3.93, 10.3-11.30, 11.5-

12.50) channels i, 3 and 5 are employed here.

First-order calibration of the AVHRR GAC data was performed

following the methods described in the NOAA Polar Orbiter Users

Guide (NOAA 1984) and Lauritsen, et al. (1970). Channel 1 was

converted to albedo and corrected for solar zenith angle; channels

3 and 5 were converted to radiance in mW m "2 sr "_ cm.

3. Example of Polar Clouds and Surfaces

Determination of the amount of cloud cover is the principal

objective of cloud classification for the study of ice-atmosphere

interactions in the polar regions. Secondarily, breakdown of the

cloud cover into different types, e.g. stratus, cirrus, cumulus

provides useful information on cloud radiative properties,

availability of moisture, and source of the cloudiness. To

determine the amount of cloud requires that the classifier

discriminate between clouds and underlying surfaces of snow, ice,

water, and land. Distinguishing between cloud type may require

information on cloud height (estimated from cloud-top temperature)

and cloud morphology (related to large-scale patterns or local

texture).

The study area is shown in Figure 1 (channels i, 3, and 5).
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This is a 250x250 pixel or (1250 km)2 area centered over Novaya

Zemlya and the Kara and Barents Seas on July I, 1984. Open water,

snow-covered and snow-free land, sea ice (various concentrations),

and high, middle, and low cloud over different surfaces are present

in the image. For computational efficiency, means of 2x2 pixel

cells were used in the classification process, reducing the number

of pixels from 62,500 to 15,625. A manual interpretation of this

area is given in Figure 2.

The problem of distinguishing discrete cloud and surface

categories is illustrated by Figure 3, which shows scatter plots

of visible vs. near-infrared and visible vs. thermal data for a

(1250 km) 2 segment of the study area. Based on training area

statistics, the spectral responses of four surface types (snow-free

and snow-covered land, sea ice, and open water) and three general

cloud categories (high, middle, and low) are identified in the

plots by their mean plus and minus two standard deviations in each

of the two channels. The principal sources of confusion are likely

to occur between snow/ice and cloud due to their similar responses

in AVHRR Channel 1 and, to a lesser extent, Channel 2. In the

thermal channels, similarities exist between the physical

temperatures of low or thin clouds, ocean, and melting sea ice.

The data in Figure 1 present several examples of cloud of varying

optical depth overlying different concentrations of sea ice. In

addition, the surface conditions of the sea ice (as estimated by

reflectance and passive microwave emissivity differences) are not

constant throughout the image. It is clear that the spectral
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properties of the clouds and ice are not likely to form compact and

distinct clusters in multispectral space. Hard classifiers are

required to force these indistinct areas into spectrally similar,

but perhaps unsuitable, classes. Otherwise, large areas of the

image will remain unclassified.

4. Classification using Fuzzy Sets

In the fuzzy sets approach, points do not belong to only one

class but instead are given membership values for each of the

classes being constructed. Membership values are between zero and

one and all the membership values for a given point must sum to

unity. Memberships close to one signify a high degree of

similarity between the sample point and a cluster while memberships

close to zero imply little similarity.

In this respect, memberships are similar to probabilities.

However, no assumption of distribution type is made in fuzzy c-

means (FCM) clustering, and calculations of memberships are not

based on probability density functions. Therefore, this

methodology bears little theoretical relationship to probability-

based techniques such as maximum likelihood which assumes multi-

variate normal distributions, or discriminant analysis which is

based on the general linear model.

The fuzzy c-means algorithm is neither a "lumper" (conjunctive

or clustering procedure), which operates by combining small

clusters into larger clusters, or a "splitter" (disjunctive or

divisive classification procedure) which begins with all pixels
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belonging to the same class then subdividing. Instead, in the FCM

algorithm all pixels begin and end with memberships in each of the

specified number of clusters; each iteration adjusts these

memberships to minimize an error function.

A brief explanation of the FCM procedure is provided below;

for a more complete description, see Bezdek (1981) and Kandel

(1982). Following Bezdek et al. (1984) and McBratney and Moore

(1985), the fuzzy c-partition space is

n c

M = {U:Uik _ [0,I]; Z Uik>O, i=l..C; Z Uik=l , k=l..n)
k=l i=l

where U is a fuzzy c-partition of a sample of n observations and

c clusters. Each element of U, Uik , represents the membership of

a particular observation x k in the ith fuzzy group. Each x k is a

vector of length p where p is the number of features (e.g. spectral

channels, texture measures, etc.). These membership coefficients

are values between 0 and 1 and for each observation sum to one.

Also, the sum of the membership values for each cluster is greater

than zero, otherwise the group does not exist.

Optimal fuzzy c-partitions may be identified with the

generalized least-squared errors functional

n c

Jm(U,V) = Z T (Uik) m(dik) 2
k=l i=l

where U is the fuzzy c-partition of the data, Xk, which is a c by

n matrix with elements Uik; V is a c by p matrix where each element

Vik represents the mean of the kth of p attributes in the ith of c
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groups; n is the number of observations; m is a weighting

component, l<m<_, which controls the degree of fuzziness; dik is the

distance between each observation xk and a fuzzy centroid v_, a

measure of dissimilarity given as

(dik) 2 = (x k - vi) T A(x k - vi)

where A is the inner product norm metric, discussed below. An

optimal fuzzy c-partition is obtained when J, is minimized. This

is achieved by the Fuzzy c-Means algorithm, which is given in the

appendix.

4.1 FCM Parameters

A number of options are available in the FCM algorithm so that

the results may be tailored to the problem at hand. These are the

weighting exponent, initial matrix, A-norm, and computational

considerations.

Weighting exponent. According to Bezdek et al. (1984), no

computational or theoretical evidence distinguishes an optimal

weighting exponent. The range of useful values seems to be [i,

30] while for most data, 1.5 _ m S 3.0 gives good results. In

choosing values for m, it is important to remember that as m

approaches unity the partitions become increasingly hard and as m

approaches infinity the optimal membership for each data point

approaches i/c. Therefore increasing m tends to increase

"fuzz iness".

McBratney and Moore (1985), applied the fuzzy c-means method
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to temperature and precipitation data from stations in Australia.

They tested a range of values for m and found that m=100 yielded

memberships almost constant at 0.5 for each of two classes

indicating that clustering was so fuzzy that no clusters would be

distinguished. They also attempted to identify optimal

combinations of c, the number of classes, and m by plotting the

change in the error functional, J,, with m for each number of

clusters, c. In general, J. decreases with increasing c and m,

but its rate of change with changing m is not constant. Their work

showed that, at least empirically, m of approximately 2 is optimal,

though for a large number of groups m should be less than for a

smaller number of groups to obtain similar balance between

structure and continuity.

Initial matrix. The initial U matrix also provides a number

of options: a random start, a random nonfuzzy start, or an almost

uniform start. Alternatively, the results from another clustering

method can be used as the initial matrix. In the random start,

each membership coefficient is given a random value between zero

and one. The random nonfuzzy start assigns a membership

coefficient of one to a randomly chosen class and zero to the

remaining sets. An almost uniform start is obtained by setting

each membership to I/c plus or minus a small random component. The

algorithm presented by Bezdek et al. (1984) employs a random start,

while McBratney and Moore (1985) found that an almost uniform start

yielded faster convergence and similar results from different runs.
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Starting with results from another cluster procedure has not

previously been tested; in our experiments the number of iterations

needed for convergence was usually reduced by 10-20%.

It is suggested by Bezdek that the FCM be run for several

different starting membership matrices since the iteration method

used, like all descent methods, is susceptible to local

stagnations. If different starting matrices result in different

final memberships, further analysis should be made.

A-morm. A detailed discussion of the geometric and

statistical implications of the choices of the A-norm is given in

Bezdek (1981). Three of these norms, Euclidean, diagonal, and

Mahalanobis, are of interest in FCM. When the Euclidean norm is

used, Jm identifies hyperspherical clusters, but for any other

norm, the clusters are essentially hyperellipsoidal. A Euclidean

metric can be used for uncorrelated variables on the same scale,

a diagonal metric for uncorrelated variables on different scales,

and Mahalonobis' for correlated variables on the same or different

scales.

Computational considerations. The fuzzy sets program was not

originally designed for application to very large data sets such

as satellite images. The number of computations necessary is a

function of the number of data items (pixels), the number of

features, and the number of clusters. The number of data items

being processed at any one time can be reduced by using a random



Ii

sample of the entire image, hopefully obtaining a representative

subset. Clustering local areas of the image with the ultimate goal

of global description is another possibility.

No alternative method of calculating cluster centers or

updating the membership matrix is evident. However, an alternative

method of error calculation - which controls termination of the

algorithm - is to compare elements of each cluster center matrix

from two successive iterations rather than comparing successive

membership matrices. The cluster center matrix is of dimensions

c by c rather than n by c for the membership matrix. If n is much

larger than c, the savings in CPU time are significant.

Additionally, computer memory Would be reduced by approximately

40%. If this method is chosen, however, data should be on the same

scale - either originally or standardized to a zero mean and unit

variance - so that cluster centers can be compared with the same

error criteria. Of course, relaxing the convergence criterion

(maximum allowable error; see Appendix, step 4) will reduce the

number of iterations required. If the channels employed are

statistically independent, then the number of computations may be

further reduced by eliminating those involving the A-norm metric,

which for uncorrelated variables on the same scale would be the

identity matrix.

Without these modifications for image processing,

computational resources are certainly not trivial, as the execution

of the FCM algorithm on a 125 x 125 pixel area requires

approximately one hour of CPU time on a DEC VAX 8550 and up to ten



hours on a DEC MicroVAX configured

Adjustment of system parameters such
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for "typical" user loads.

as working set size can

significantly reduce disk paging, which will in turn reduce total

CPU time. With adjustments for large images, computation time can

be reduced by a factor of ten.

4.2 Validity funotionals

It is possible to obtain data sets where the error functional

is globally minimal but where the resulting classes are visually

unappealing. To aid in the resolution of this problem, two

validity functionals are used to evaluate the effect of varying the

number of clusters: the partition coefficient, F, and the entropy,

H:

and

c n

F= Z Z (Uik)2/n
i=ik=l

c n

H =- Z Z (Uik Ioga Uik)/n , 0 < O < _
i=Ik=l

F will take values between I/c and one, while H has a range of zero

to log_c. When F is unity or H is zero, clustering is hard, while

an F value of i/c or an H value of log_c implies that memberships

are approximately I/c. A plot of F or H by the number of groups

may be examined for local maxima of F or minima of H, which will

give some indication of optimal c.
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5. Results

The FCM program was applied to the study area in Figure 1 as

represented by AVHRR channels i, 3, and 5. A variety of fuzziness

index values were tested as well as a range in the number of

clusters. The partition coefficient, F, and entropy, H, for each

run is listed in Table i. Run #5 represents an essentially hard

classification (m=1.25) where F is large and H is small.

Conversely, the fuzziness index of 2.6 in run #2 resulted in a

small F and large H. Run #6 produced the least visually appealing

and least realistic results of all runs. This is supported

statistically by the minimal F and maximal H. Figure 4 illustrates

the change in F and H for a varying number of clusters. For these

tests, m=2.0. A local maximum for F and minimum for H occur at

c=6, with c=10 also being acceptable.

A visual examination of the results from each of these tests

revealed that the 10-cluster solution best identified the cloud

and surface types present in the scene, therefore an interpretation

of this solution is given. Figures 5a-Sj (hereafter Sets A-J)

illustrate each of the ten classes where grey level represents

membership of each pixel in the class, lighter grey shades

indicating larger membership values. The most distinct

classifications are shown by the bright areas (high probabilities)

assigned primarily to land in Set C, sea ice under clear skies (Set

H), and open water (Set I). The varying gradation of cloud

conditions are represented in several of the other sets. Sets E



and G describe high stratocumulus,

memberships for lower stratus.
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Sets A, D, and J show high

Thin stratus over ice " is

represented in Set F. Large memberships in Set B occur for thin

cloud over water, but also for mixed pixels at land, cloud, and ice

edges. Areas that are not distinctly classified in a single set

appear as intermediate gray-tones in several of the sets in Fig.

6. In particular, the ice cap on Novaya Zemlya is confused with

thin cloud over ice (Set F), and thicker, higher clouds in Sets A,

D, E, G, and J. These are areas that - at least for this

particular algorithm - require additional information to be

distinguished from other classes.

The distribution of memberships between the fuzzy sets

described above presents a convenient graphical tool for

interpreting the physical properties of clouds and surfaces, and

thus the potential sources of confusion in multispectral

classifiers. For example, the similarity between clouds and the

Novaya Zemlya ice cap in several of the fuzzy sets is apparently

due to similar albedos and temperatures yielding similar responses

in AVHRR channels ! and 5. Interestingly, the ice cap has the

largest membership in Set F, with memberships similar to the thin

cloud over ice in the upper-left portion of the image. A physical

interpretation of the memberships in Set F suggests that the

combination of thin cloud with an underlying, high-albedo surface

yields a combined spectral return with physical temperature and

albedo similar to the Novaya Zemlya ice cap under clear skies.

If desired, a hard classification can be obtained from the
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fuzzy sets results where, for each pixel, the largest membership

value is replaced with a membership of one, while membership values

for the other classes are set to zero. In this manner, the same

basic classes will result, but the fuzziness is eliminated.

5.1 Statlstical Properties

The previous discussion pointing out the ability of the fuzzy

sets to combine multispectral information into individual

probability sets is suggestive of artificial orthogonal features

created through principal components analysis. The fuzzy sets are,

however, simpler to interpret in physical terms since their

development is not restricted by the objective of creating

uncorrelated components and maximizing the amount of variance

accounted for by each component. No attempt is made to include as

much information as possible in the first few sets created. Unlike

principal components, the information content of each successive

fuzzy set does not necessarily decrease. In fact, Sets H and I

represent two of the most spectrally-distinct classes in the AVHRR

data.

These differences between the fuzzy sets classifier and

principal components is demonstrated by examining the

cross-correlations between the individual probability sets. The

maximum correlation (37%) occurs between Set A and Set J. Sets H

and I are not positively correlated with any of the other sets.

Sets A and J both predominantly represent slightly different

conditions of stratus cloud. The lack of a requirement that the
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two sets be uncorrelated allows the gradation of cloud height and

thickness to be clearly represented in these two sets. On the

other hand, the ability of the fuzzy sets classifier to identify

basically uncorrelated classes such as open water and sea ice is

demonstrated in Sets H and I.

Application of principal components analysis with fuzzy sets

as variables and individual pixels as observations allows us to

identify similarities among the sets more quantitatively. Using

unrotated components, eight components are required to account for

94% of the variance present in the sets, while the first five

components describe 69% of the variance. The large number of

components required to represent the information content of the

fuzzy sets confirms that each set provides a considerable amount

of unique information. Comparison of the factor loadings in each

set suggests that Principal Component 1 discriminates between

different conditions of stratus cloud and open water (high loadings

for Sets A and J, and negative loading for Set I. A similar type

of interpretation can be made for Component 2, which appears to

represent high cloud, with the greatest positive loadings for Fuzzy

Sets E and G). With the exception of Components 1 and 2, no

loadings exceed 50%. The relationships between the fuzzy sets as

variables is perhaps slightly masked by the potential confusion of

unique and common variances inherent in principal components.

However, the component-derived groupings agree well with the

correlations in the cross-correlation matrix. As a final

confirmation of the uniqueness of each fuzzy set, a Varimax
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rotation was applied to the principal components. Results of the

rotation approach the desired ideal of simple structure, with a

loading of nearly 1.0 on one set per component, again suggesting

that large correlations are not found between groups of fuzzy sets.

5.2 Supervised Approach

A supervised approach may be taken if class means are known.

In this case, the algorithm may be modified to simply calculate the

memberships for each pixel in each of the known classes. The

memberships are still a function of the weighted distance to the

class means, but the class means are no longer determined by the

algorithm. These are instead supplied in a manner analagous to

using training sites to provide spectral statistics for a

supervised classification. This approach is very fast (30-40 times

faster than unsupervised) as it requires only one pass through the

data.

We have found that class means must be very carefully

selected, and that some experimentation may be necessary to reach

a realistic solution. For example, Run #7 in Table 1 was a

supervised classification where a seven-cluster solution was

specified and class means were provided for snow-covered and snow-

free land, sea ice, open water, high cloud, middle cloud, and low

cloud in AVHRR channels i, 3, and 5. Snow-covered land did not

uniquely define any fuzzy set, but was instead grouped with low

cloud because of similar albedos and brightness temperatures.

While this problem may be solved by adjusting the class means,
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perhaps a better solution would be to add a weighting function to

the algorithm so that features which better define a particular

class will be more influential in the calculation of membership

coefficients.

5.3 Maximum Likelihood Classification

To provide a source of comparison to the fuzzy sets approach,

the data shown in Figure 1 were classified using an unsupervised

maximum likelihood (ML) procedure. The results are shown in Figure

6. The unsupervised clustering approach (with all image pixels

taking part in the definition of spectral signatures) yielded 21

clusters, with four clusters accounting for 67% of the area. None

of the remaining 17 clusters represented more than one percent of

the image. Sixteen percent of the scene remained unclassified, and

an additional 12% of the image pixels fell in more than one

cluster. Misclassifications are noted for indistinct classes,

specifically low concentration ice (grouped with low clouds),

optically thin clouds, and for boundary pixels between different

classes.

The restrictive effects of the hard classifier vs. fuzzy sets

are apparent in the large number of unclassified pixels. Most high

and middle cloud layers were left unclassified, as was the ice cap

on Novaya Zemlya. For indistinct classes common in polar cloud

analyses, the fuzzy sets approach avoids errors of commission and

ommission that occur when such indistinct values are forced into

the nearest class in spectral space.
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6. Discussion

Sets A, B, D, E, F, G, and J of the fuzzy sets classification

each represent a separate cloud class, although other surface/cloud

mixtures sometimes had large membership values in these classes.

A map of cloud classes constructed from the maximum membership

value for each pixel is shown in Figure 7. These results generally

agree with the manual classification in Figure 2 and the maximum

likelihood classification shown in Figure 6. Discrepancies occur

with middle and high clouds (unclassified in the ML method), and

with cumulus which, in the ML procedure, is grouped with an

optically thin stratus deck over sea ice.

While there were some obvious differences in number of cloud

classes and the cloud types that each class represented in the

three methods, the total cloud amount computed for each procedure

was similar. For the manual and ML classifications, cloud fraction

is simply the proportion of cloud pixels in the image. In the ML

results, this was computed for only those areas labeled as cloud

in Figure 6, and again with the unclassified areas included. For

the fuzzy sets results, two methods of computing cloud fraction

were examined. In both cases, the membership values of each pixel

in each of the cloud classes were summed. This may be considered

an estimate of a pixel's "cloudiness". Then, in the first case,

for each threshold from 0.4 to 0.9 in increments of 0.i, a pixel

was considered cloud-filled if its cloudiness exceeded the

threshold. Cloud fraction was expressed as the proportion of
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cloudy pixels in the image. In the second case, the pixels were

considered partially cloud-filled, with cloud fraction being the

sum of all cloudiness values that exceeded the threshold, as a

proportion of the total number of pixels in the image. Cloud

fractions computed for the manual classification, ML method, and

the fuzzy sets are given in Table 2. Best agreement between the

methods occurs when the threshold is high (0.7) if pixels are

considered completely cloud-filled, or in the midrange (0.4-0.6)

is pixels are treated as partially cloud-filled.

7. Conclusion

The fuzzy sets method of classification was successfully

adapted to the analysis of multispectral satellite imagery. The

ability of the fuzzy sets approach to address indistinct spectral

classes by calculating class memberships as opposed to the

"in-or-out" decision required of hard classifiers is particularly

well suited to the range of albedos and physical temperatures

encountered in the analysis of ice and cloud conditions in the

polar regions.

Application of the fuzzy sets classifier to an AVHRR image

containing sea ice and cloud of varying condition and opacity

yielded ten membership sets containing contextually and

statistically unique information. Interpretation of intensities

in images of these sets demonstrates the ability of the fuzzy sets

to describe well-defined classes (such as open water and land) as

well as classes that fall in intermediate spectral space (e.g.,
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ice cap, thin stratus over water, or sea ice of varying

concentration). Identification of such fuzzy areas in taxonomic

space provides information on where data in additional spectral

regions are required for accurate classification. Future work will

use the fuzzy sets approach as a tool to help "tune" hard

classifiers such as unsupervised clustering and bispectral

threshold methods for cloud and ice mapping in the polar regions.
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Zppendix

Following Bezdek et al. (1984), the Fuzzy c-Means (FCM)

algorithm is:

(I) Fix: c, 2<c<n-I

m, l<m<_; the larger the m, the fuzzier the solution;

many practitioners use m=2.

A, the inner product norm metric for R p, where p is

the number of attributes

U °, the initial fuzzy c-partition

c, the value for the stopping criterion (E=0.01 gives

reasonable convergence.)

Repeat until convergence (step 4):

(2) Calculate the c fuzzy group centroids, v i
n n

v i = Z (Uik)_Xk / Z (Uik)" for all i
k=l k=l

(3) Update U [ using

2/(m-l)
c dik

uik = I/[ z (---)
j =i djk

which may be rewritten in the more computationally efficient

form:

c

Uik = [i/dik2) I(m'I)][i/ T. (i/dik2) II(m'I)]

j=l

The measure of dissimilarity, dik 2, is given as

(dik) 2 = (X k - v_) T A(x k - vi)

where A is the inner product norm metric.

(4) Compare U [+I to U [. If the difference between all

corresponding elements is less than or equal to £, then

stop. Otherwise, set U t = U (÷I and return to step (2).
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Run #

Table 1

Results of FCM tests for varying m and c.
Scaling norm is diagonal in all cases.

Number of
Clusters

Fuzziness Partition
Index, m Coefficient I Entropy I Comments

1 8 2.00 0.46 1.23

2 8 2.60 0.25 1.73

3 7 2.30 0.37 1.40

4 i0 1.25 0.90 0.19

5 8 1.80 0.12 2.08

6 i0 2.00 0.50 1.20

7 7 2.00 0.53 0.98

Hard

Poor

Study run

Supervised

I. See text.



Table 2

Cloud fraction computed for three classification methods.

Manual Fuzzy Sets (Threshold:)
Interp. ML I ML 2 0.4 0.5 0.6 0.7 0.8 0.9

0.53 0.40 0.55 0.69 0.65 0.62 0.57 0.46 0.193

0.56 0.54 0.52 0.49 0.40 0.184

I. Classes labeled as cloud only.

2. Including unclassified areas as cloud.

3. Pixels treated as completely cloud-filled.

4. Pixels partially cloud-filled.



Figure i. Study area centered on Novaya Zemlya (approximately
75_N, 60°E) and containinq the Kara and Barents Seas.
The area covers (1250 km)2. AVHRRchannels i, 3,
and 5.

Figure 2. Manual interpretation of the area shown in Figure i.
Cloud classes: LCLI - low cloud over sea ice; LCLW -
low cloud over water; MCL - middle cloud; HCL - high
cloud, Cu - cumulus.

Figure 3. Bispectral plots of AVHRR data for the arctic. Class
means ± two standard deviations are shown as
rectangles.
a) visible vs. near-infrared; b) visible vs. thermal.

Figure 4. Plot of the partition coefficient, F (solid line), and
entropy, H (broken line), as a function of the number of
classes. In all cases, m=2.0.

Figure 5. Ten classes produced by the FCM algorithm from the
the study area data. See text for interpretation
of classes.

Figure 6. Study area as classified by a unsupervised maximum
likelihood procedure. Cloud classes are as defined
for Figure 2. Additional class codes: U -

unclassified, M - mixed classes, low cloud is defined

by two classes: LCLI and LCL2.

Figure 7. Fuzzy sets classification of the study area. The class

to which a pixel belongs is the one with the largest

membership value. Cloud classes: LCLI - low cloud over

sea ice; LCLW - low cloud over water; MCL - middle cloud;

HCL - high cloud, Cu - cumulus.

*** NOTE TO REVIEWERS ***

Due to the high cost of producing prints, only one set of Figures

1 and 5 has been sent to the editor. These have been photocopied

to the best of our ability and included here, but some grey levels

have been lost. We feel that these are adequate for conveying the

point of "partial memberships" in each class, but we ask that you

keep in mind the unavoidable reduction in the quality of these

copies.
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ABSTRACT

A forward-feed, back-propagation neural network is used to classify merged AVHRR

and SMMR summer Arctic data. Four surface and eight cloud classes are identified.

Partial memberships of each pixel to each class are examined for spectral ambiguities.

Classification results are compared to manual interpretations and to those determined by a

supervised maximum likelihood procedure. Results indicate that a neural network approach

offers advantages in ease of use, interpretability, and utility for indistinct and time-variant

spectral classes.

INTRODUCTION

The Arctic region provides a unique set of problems for image analysis algorithms.

Current procedures for automated analyses of satellite radiance data have been developed for

low and middle latitudes but their application to polar regions has been largely unexplored.

Those that have been applied often fail in the polar regions because surface temperatures are

commonly as low or lower than cloud-top temperatures, and because snow-covered surfaces

exhibit albedos similar to those of clouds. Also, extremely low surface temperatures and

solar illuminations cause satellite radiometers to operate near one limit of their performance

range, and in winter no visible-wavelength data are available. Because of these problems, a

complex analysis method is necessary (WMO, 1987). Classification of Arctic AVHRR data

with clustering algorithms has been performed primarily by Ebert (1987, 1988), Key (1988),

and Key et al. (1989).

In this paper, we investigate the ability of neural networks to extract four surface and

eight cloud classes in the Arctic from a merged data set consisting of five Advanced Very

High Resolution Radiometer (AVHRR) and two Scanning Multichannel Microwave

Radiometer (SMMR) channels. Results are compared to manual interpretations and to
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output from a supervised classification with a maximum likelihood class assignment scheme.

Since cloud and sea ice mapping for climatological studies requires the processing of many

images covering large areas (for example, 30 days worth of AVHRR images for the

northern hemisphere), selection of training sites in a supervised scheme or the assignment of

spectral clusters to physical classes in an unsupervised approach can involve an unacceptable

amount of time and effort. Since a class such as low cloud over ice actually includes a

range of cloud thicknesses overlying a range of ice concentrations, considerable spectral

variability exists within the class as well as within individual pixels. Our primary goal in

this work is to investigate the ability of a neural network classifier to deal with the

considerable within-class variability encountered in our data based on a relatively small

training set. The manual and supervised classifications are used to provide benchmarks for

comparison of the neural network results, rather than as a test of the merits of these more

traditional methods.

Motivated by the apparent limitations of multispectral feature extraction from imagery

and the availability of expert system development tools, artificial intelligence (AI) techniques

have come into increased use for the analysis of remotely sensed data (e.g., Nicolin and

Gabler, 1987; Matsuyama, 1987; McKeown, 1987; Estes et al., 1986; Nandhakumar and

Aggarwal, 1985; Campbell and Roelofs, 1984), and have also been employed in geographic

information systems (GIS) applications (e.g., Usery and Altheide, 1988; Ripple and

Ulshoefer, 1987; Robinson and Frank, 1987; Smith et al., 1987; Jackson and Mason, 1986;

Smith, 1984). Due to the limited knowledge of the physical processes in the environment

and the inherent noise in many geophysical data, environmental systems often cannot be

accurately represented through numeric values describing their physical properties and

interactions, but rather are subjected to categorization into broad classes. Most applications

of expert systems have sought to apply qualitative knowledge to decision-making; expert
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systemsoperateprimarily on abstractsymbolicstructures. In remotesensing applications

where pattern recognition, spatial and temporal context, and multivariate analysis are

common requirements, coupled numeric/symbolic systems may be useful. This issue has

recently been addressed by Kitzmiller and Kowalik (1987), Kowalik (1986), and Borchardt

(1986). Traditional techniques may not be adequate to identify and make use of

relationships across such a broad range of numeric and non-numeric variables.

The neural networks, or cotmectionist, approach was first introduced as a theoretical

method of AI in the 1960s. However, limitations in simple systems were recognized by

Minsky and Papert (1969) and the concept gave way to the symbol system approach for the

next two decades. The idea has recently been revived due to advances in hardware

technology allowing the simulation of neural networks and the development of nonlinear

multi-layered architectures (Rumelhart et al., 1986). The technique has considerable

potential for remote sensing, as suggested by applications to automated pattern recognition

(e.g., Ritter et al., 1988). The relationship between symbolic AI and neural networks is

addressed by Chandrasekaran et al. (1988).

DATA

The data sets used here provide a broad range of spectral information necessary to

map clouds and surfaces in polar regions. These data are typical of the types of imagery

used for mapping of global cloud, sea surface temperature, and other climatological

variables. The Advanced Very High Resolution Radiometer (AVHRR) on board the

NOAA-7 polar orbiting satellite measures radiance in five channels encompassing the

visible, infrared, and thermal portions of the electromagnetic spectrum (1: 0.58-0.68pm, 2:

0.73-1.0vm, 3: 3.55-3.931Jm, 4: 10.3-11.3_m, 5: 11.5-12.5tam) with a nadir resolution of 1.1

km. Global Area Coverage (GAC) imagery is a reduced-resolution product created through
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on-board satellite processing, with each pixel representing a 3 x 5 km field of view

(Schwalb, 1978). Channels l and 2 were converted to approximate spectral albedo;

channels 3, 4, and 5 were converted to radiance in milliwatts/(m_-steradians-cm) then to

brightness temperature (NOAA, 1984; Lauritsen et al., 1979). The typically low water

vapor content in the polar atmosphere and the low physical temperatures reduce most

atmospheric effects to a point where they may be neglected for the analyses performed here.

Approximate corrections for solar zenith angle in channels 1 and 2 were accomplished

through a division of the albedo by the cosine of the zenith angle.

The Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) is a conically

scanning radiometer that senses emitted microwave radiation in five channels: 6.6, 10.7,

18.0, 21.0, and 37.0 GHz, with two polarizations (horizontal and vertical) per channel. At

these frequencies, passive microwave data is relatively unaffected by clouds and provides

useful data year-round independent of solar illumination. The 18 and 37 GHz vertical

polarization channels are used here primarily for surface parameterization, with fields of

view of 55x41 km and 27x18 km, respectively.

In order to study both clouds and surfaces beneath clouds, it is worthwhile to combine

the AVHRR and SMMR channels into a single image set. AVHRR and SMMR data were

merged in digital form and mapped to a polar stereographic projection. This projection

yields pixels true to scale at 70 ° latitude with a five kilometer pixel size. Five kilometer

pixels were averaged over 2x2 cells yielding an effective pixel size of ten kilometers square.

(Further constraints imposed by the image analysis system reduced this to 125x124 pixels.)

SMMR data were converted to the five kilometer cells by simple duplication of pixels.

Further details are given in Maslanik et al. (1989). In this form, color composites can be

made consisting of combinations of microwave, visible, and thermal-wavelength channels to

highlight different cloud and surface features in the data.
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The study area (Figure l) is centered on the Kara and Barents Sea extending north

toward the pole and south toward Norway and the Siberian coast. Novaya Zemlya is near

the center of the image. Shown are AVHRR channels 1, 3 and 4 for July 1, 1984. Both

AVHRR and SMMR imagery were also acquired for July 4, 1984. While covering only a

small portion of the Arctic Basin (1250x1250 kin), it includes representative samples of all

surface types found in the Arctic: snow-covered and snow-free land, sea ice of varying

concentrations, and open water.

METHODOLOGY

Four surface classes are of interest in this study: snow-free land, snow-covered

land/ice cap, open water, and sea ice (abbreviations used: LAND, SNOW, WATER, ICE).

Three broad classes of cloud - low, middle, and high - are defined by temperature as

measured in AVHRR channel 4 and are further categorized by the underlying surface type.

Not all surface/cloud level combinations occur in the study image, and those that do not are

excluded from the analysis. Eight cloud classes are examined: low cloud over land, water,

and ice; middle cloud over water and ice; and high cloud over land, water, and ice

(abbreviations used: LCLL, LCLW, LCLI, MCLW, MCLI, HCLL, HCLW, HCLI,

respectively). The data are classified by two procedures: a neural network and a maximum

likelihood classifier. The maximum likelihood procedure is supervised, initially using the

same training areas as used to train the neural network.

The development of neural network architectures as a computational method builds on

the fact that the brain is overall much more powerful in processing information than any

serial computer. Neural networks (NN), connectionist systems, or parallel distributed

processing systems (PDP) consist of networks of independent processors or units that are

highly interconnected and process information through interaction between the individual
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processing nodes. Interaction between processors is determined by the network architecture:

the number of layers, number of units in each layer, strengths of the connections (weights)

between the units, unit activation functions, learning rules, and data representation. The

advantage of PDP in the example presented here is the capability of such networks to learn

by example. Through the use of learning rules a neural network adjusts its connection

weights to associate a set of input patterns with a set of output patterns and thereby "learns"

the relationship between the input and output. In this study, multispectral data in training

areas provide the input pattern: the desired cloud/surface class is the output pattern. Since

processing in PDP systems is done through the interaction of many processing units, neural

networks further display a feature known as "graceful degradation" where, given partially

missing or noisy information, they are frequently capable of computing meaningful output.

Of course, if classes are overlapping in feature space, and one or more of the features

which best discriminate between classes are missing or otherwise corrupt, the network may

produce an incorrect classification.

Forward-feed networks consists of a layer of input units, one or more layers of

hidden traits, and a layer of output units. The input units have direct connections to the

units in the hidden layer which in turn are connected to the output layer. Information

processing flows from the input layer through the hidden layer to the output layer and no

feedback mechanism from the output to the input layer exists. There are also no direct

connections between individual nodes within a layer. The relatively small number of

connections, and therefore number of learnable connection weights, allows this type of

network to train quickly while still being capable of solving complex problems through the

construction of powerful generalizations.

A back-propagation network learns in the following way. An input and a training

pattern - the "correct" output for a given input - are presented simultaneously to the
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network. Through the connections, which are initially random, the network computes an

output pattern, which is then compared to the training pattern. The error between the

output pattern and the training pattern is used to adjust the weights between the output and

hidden units to minimize the error between the llaining pattern and the output pattern.

Since the output units are directly connected only to the hidden units, the training error is

propagated backward through the network so that the weights between hidden and the input

layer are also adjusted according to the learning rule (McClelland and Rumelhart, 1988).

Training and input patterns are presented to the network many times while the network is

adjusting its weights to minimize the error between all input and training patterns. The

network will converge on a solution that maps the set of input vectors to the set of output

vectors, if such a mapping function exists. During this training process the units in the

hidden layer construct generalizations or internal representations of the input patterns.

The network presented in this paper uses a forward-feed architecture with a layer of 7

input units representing the AVI-IR and SMMR channels, a layer of 10 hidden units, and a

layer of 12 output traits representing the surface/cloud classes. The network is trained on

patterns (training areas) for each desired class.

the complete data set (image) and computes

activation of the output units.

After training, the network is presented with

a membership value, represented by the

Where spatial and spectral boundaries between phenomena are diffuse, hard classifiers

which produce mutually exclusive classes seem particularly inappropriate. This issue is

discussed further in Key et al. (1989) in relation to the fuzzy c-means algorithm. The

neural networks approach addresses this problem of often indistinct spectral boundaries

between classes by providing as output a numeric value as well as the class symbol for

each pixel. This is a membership value for the pixel to each class, and is in the range

[0,1], larger values implying greater strength of membership in a particular class. With the



activation function used in this study (sigmoid),

throughout the range.

In this example, two sets of training areas

8

these values are approximately linear

(referred to as TA1 and TA2) were

selected in the typical supervised manner, with each training area manually delineated in the

digital imagery. The training sets were chosen so that the effects of different within- and

between-class variability could be tested, with TA1 representing a relatively small sample

designed to study the ability of the neural network to address within-class variability not

contained in the training statistics (e.g., the variability expected due to changes in ocean and

ice temperature, ice concentration, and cloud height and thickness over space and time).

TA1 included 1% of the 15,500 pixels (125 lines x 124 pixels) in the lest data set.

Additional training areas were included in TA2 to expand the variance of the training

statistics sufficiently so that a significant portion of the test images would be classified

using the maximum likelihood classifier. TA2 included about 9% of available pixels. Class

means by spectral channel were nearly the same in TA1 and TA2 but, with the exception of

the LCLI class, standard deviations were twice as large on average in TA2 (mean standard

deviation in DN of 1.9 for TAI versus 3.8 for TA2). As noted earlier, selection of training

areas this large is not practical for climate applications requiring analysis of many images

over large areas (thus the impetus to test the neural network using TA1). However, TA2

was needed to address the trade-off between classification accuracy and human interaction

using the supervised maximum likelihood approach for the types of data used here. The

July 1 and July 4 images were manually interpreted using digital color composites of

several AVH and SMMR channels. The manual interpretation thus acts as a hard

classifier, with classes that consist of a "best-guess" estimate of class membership based on

visual clues. Maximum likelihood (ML) classifications of the July 1 and July 4 images

with seven data channels as input were carried out using TA1 and TA2 statistics. The ML
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procedure was run on a DEC MicroVax computer and required approximately 1 CPU

minute for the computation of training area statistics and 2.5 minutes for image

classification.

The neural network was trained using the individual pixel values in TA1 as input

patterns. The network learned these sets of spectral patterns in approximately 23 minutes

on an IBM PC/AT (12 MHz) class machine. The trained network then classified the entire

study area in approximately 4 minutes. To address indistinct spectral boundaries, pixels

were assigned to the class with the highest membership value. Pixels with no membership

value greater than 0.4 (arbitrary) were tagged as unclassified. In an attempt to similarly

relax the restrictions of the maximum likelihood classifier, cut-off limits for pixel position

within the n-dimensional Gaussian class-membership curve were varied to a maximum of

99%, and different apriori probabilities were tested.

RESULTS

Figure 1 illustrates many of the problems involved in mapping polar surfaces and

clouds. With the exception of land/water boundaries, edges between classes are typically

indistinct, as is the case at the sea ice margins where the transition from high concentration

ice to open water is not distinct. For classes that include thin cloud, such as the regions of

low cloud over ice and water, cloud opacity varies within the class. The sensors therefore

record varying proportions of surface and cloud within a single class. Cloud height is also

subjective; heights actually may fall anywhere within the low, medium, high designations.

A manual classification of the July 1 image with the classes described previously is

shown in Figure 2, and will be used for comparison to the neural network and maximum

likelihood results. Eighteen percent of the image was left unclassified where no dominant

class could be determined. As noted above, within-class variance is large, particularly in
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classes LCLI and LCLW. Coefficients of variation are greatest in the 18 GHz SMMR data

and for the AVHRR visible-wavelength channels within these classes, suggesting some

confusion between ice and open water.

Table 1 shows the total percentages of the July 1 and July 4 images that were

actually classified using training areas TAI and TA2, and the ML and NN classifiers. The

neural network (NN) classification of the July 1 image is shown in Figure 3. Some

important differences are apparent between the neural network output and the manual

classification in the ICE and LCLI classes. The NN results underestimate the amount of

low cloud over ice. The NN classification also puts a larger portion of the ice margin area

into the WATER rather than ICE class. The contingency table _,-l'able 2) comparing

classifications of the July 1 image using NN and the manual interpretation confirm this, and

also shows that NN tends to assign cloud/surface classes to surface classes, particularly in

the case of ICE versus LCLI and WATER versus LCLW. Confusion also exists between

cloud height classes. Of the pixeis classified in both the NN and manual classifications

(i.e., excluding unclassified pixels), overall agreement between classification schemes is

53%. The NN classification of the July 4 image shows similar patterns. As was the case

for the July 1 data, nearly the entire image was classified. Differences between the NN

results and manual classification for July 4 were greatest between cloud height classes and

between low cloud over ice versus clear sky over ice.

Maximum-likelihood classified images are shown in Figure 4 for July 1 using TA2

statistics. Since the MI_, classifications using TAI essentially included only those pixels

within and adjacent to the TA1 training areas, these images are not illustrated. Comparing

the manual interpretation in Figure 2 with the ML classification shows that the ML

classification using the more comprehensive tlaining areas of TA2 effectively captures the

basic cloud and surface patterns. However, more than half of the manually-interpreted



11

MCLW class is left unclassified by ML. Remaining unclassified pixels are divided among

cloud classes and ice/water classes. A contingency table (Table 3) of the manual

classification versus the ML classification using the TA2 training areas illustrates the

problem of distinguishing between cloud height classes and between intermediate mixes of

cloud and surface classes. This supervised ML classification achieved a high agreement of

85%, representing the large training set in TA2. Extension of these TA2 signatures to the

July 4 data using ML illustrates the reduction in applicability of training signatures over

time compared to the NN classifications, as shown by a general decrease in the percentage

of the image that is classified. Given the variability of ice conditions and cloud thicknesses

within a single image, it is not surprising that day-to-day variability is enough to reduce the

representativeness of the training areas in terms of class mean and covariance. With the

exception of class LCLI, standard deviations of training areas in TA1 are considerably less

than is the case for TA2 and the manually interpreted classes. TA1 signatures thus include

only a small portion of the variance in the desired classes, as indicated by the low

percentage of the image actually classified using TA1 statistics.

DISCUSSION

The pattern of weights in the network provides insight into the way decisions are

made by the network. For our example, interpretation of these weights sheds light on

which spectral channels are important for classifying particular cloud/surface classes.

Similarly, the network weights indicate, for each output class, the degree of information

redundancy among channels in the input data; channels that are only weakly weighted add

little additional information to the classification process. Figure 5 shows an example of the

connections between the input channels, hidden layer neurons, and the output classes in the

trained network used here. Due to the complexity of the connections between units, only
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the surfaceclassesareshownin the figure. Tile identification of the exact role of hidden

units is difficult, as they often represent generalizations of the input patterns. Strength of

the connections shown varies from 0.6 to 0.9 (on a scale of -1.0 to +1.0). These

connections are summarized in Tables 4 and 5. Table 4 shows which input data channel

each hidden node is associated with in the trained network. Table 5 shows the association

between hidden units and the output data classes. Following the connections through these

two tables therefore indicates which input channels are linked to particular output classes.

As shown in Figure 5 and Table 5, snow-free land has strong connections with hidden layer

neurons 2, 3, and 6, all of which represent thermal AVHRR channels and the SMMR

channels (Table 4). We may therefore conclude that land is best distinguished from the

other channels by its physical temperature and its emissivity in the microwave portion of

the spectrum. Snow/ice cap is identified by its albedo and temperature, with no significant

information gained from the microwave signature. The identification and discrimination of

ice from the other classes requires albedo, temperature, and microwave emissivity

characteristics. The connections show that cloud identification is a function of height, with

thermal characteristics being more important for middle- and high-level clouds. The

identification of low cloud depends on the underlying surface, where temperature is an

adequate discriminator if the cloud is over land, albedo and temperature are used if over

water, and temperature and the longer-wave reflected solar component (AVHRR channel 3)

are needed if over ice. The hidden layer neurons with connections to AVI-tRR channel 3

(numbers 7 and 9) are also connected to either channel 2 or channels 4 and 5, indicating

that both the reflected solar and thermal components of channel 3 likely play a part in the

classification. The connections demonstrate the usefulness of AVHRR channel 3 for

discriminating between cloud and snow or ice. Finally, note that hidden layer neurons 1

and 5 do not "listen" to any inputs, and therefore do not add any information to the
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network.

Althoughboth the neuralnetworkand the ML classifier use the same training data,

some fundamental differences exist in the way they are used. The neural network does not

directly address the mean and covariance within a training area. Instead, each pixel within

the training area is a separate pattern that directly influences the development of node

weights. The multispectral characteristics of each pixel imprints itself to some degree on

the network connections. During the development of unit weights as part of the network

training phase, some aspects of training area means and covariances are included in the

weight assignments. However, unlike the ML classifier, the neural network is not limited to

assmning a statistical relationship between pixels within a class and is not restricted by

assumptions of normality in the data. The fact that the multispectral data used here often

violate these assumptions (Key, 1988) may contribute to the low percentage of the data

classified using ML and the training statistics in TA1.

To tes! this hypothesis, a synthetic data set of AVHRR and SMMR data was

developed that exhibited truly normal data distributions. Rectangular cloud and surface

objects of varying sizes and locations were generated whose dimensions were randomly

chosen within a restricted range. Object regions were then filled with normally distributed

data for each channel based on pre-specified means and standard deviations (Gaussian

random number generator) characteristic of the polar clouds and surfaces. With this data set

there will be only one statistical class for each physical class (e.g., land, low cloud over

water, etc.). For this reason, and because the data are normally distributed with a known

variance, the probability of selecting a training area representative of the population is

higher than with the actual data. Therefore, even small training areas should provide

enough information about each class to allow a larger proportion of the area to be

classified. This was in fact the case, where training areas extracted from less than 1% of
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the synthetic image allowed approximately 70% of the image to be correctly classified by

the ML procedure. This test suggests that deviations from a normal distribution likely

contribute to the low percentages of classification using the ML classifier.

The ability of a neural network to compute similarity measures through a comparison

of patterns contributes to its ability to classify large portions of data on two separate

images. Thus, although a relatively small portion of the variability of clouds and surfaces

were captured in the Iraining areas (particularly TA1), the neural network was still able to

reliably choose the most appropriate output class. This properly provides a means to

address the problem of signature extension over time and space, since a properly trained

network can make class assignments - albeit with reduced confidence - in the face of

atmospheric effects or slight changes in spectral properties without requiring apriori

knowledge of within-class variance or probabilities of class membership. In fact, if one has

a particular reason to use a statistical classifier, the strength-of-membership values calculated

by a neural network could be fed back into the statistical classifier as apriori probabilities

using, for example, the probability image feature in the ERDAS *_ MAXCLAS function.

The classification example presented has utilized numeric data albedos and

brightness temperatures - as input. Output is on the nominal level for both the neural

network and the ML procedure, although the neural network also provides a type of

membership value. In some cases, input such as category identifiers rather than

measurements may be useful where pixels are assigned a class symbol and optionally an

associated fuzziness value (e.g., the probability that the pixel belongs to the class). A

second neural network was developed that uses both nominal and categorical input. For

example, in the study area the locations of land and permanent ice cap are known, and the

location and concentration of sea ice can be determined from the SMMR data. Consider

also the case where only three broad categories of sea ice concentration are of interest: low
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(15-40%), medium (41-70%), and high (71-100%). Other variables are also possible; for

example, time of year, geographic location, spatial context, texture, stage of plant growth,

and the a priori probability of occurrence of each surface or cloud type. For simplicity,

however, the exaanple is limited to symbols representing land/not land, ice cap/not ice cap,

and low, medium, and high sea ice concentration variables.

This network was trained with input units corresponding to both spectral and

categorical variables. Since some of the AVHRR and SMMR channels are highly correlated

- as evidenced from principal components analysis and an examination of the previously

described neural network, only AVHRR channels 1, 3, and 4, and SMMR channel 18 GHz

vertical were used in the training. Categorical input variables represent land, ice cap, and

sea ice concentration. Nine hidden layer units were specified with output classes as before.

As expected, the resulting classification (not shown) is similar to that using only spectral

information but the proportion of correctly identified surface pixels increased slightly,

whereas the proportion of cloudy pixels remained essentially the sanle. In addition, the

cerlainty with which surface pixels were classified as measured by the output membership

values increased significantly; with some coastal pixels the increase was as much as 0.4.

CONCLUSIONS

Four surface and eight cloud categories in merged AVHRR and SMMR data for the

Arctic summer were identified through a neural network approach and a traditional

maximum likelihood procedure. Both the numeric and the numeric/symbolic neural

networks extracted correct information from the multispectral images. The differences

between the neural network and the supervised maximum likelihood classifications were

primarily due to the greater flexibility of the neural network to classify indistinct classes,

e.g., classes containing pixels with spectral values that differ significantly from those in the
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trainingareas,while ignoring assumptions of statistical normality. The two classification

approaches illustrate the tradeoffs between human interaction in the selection of training

areas and classification accuracy and flexibility. Flexibility similar to that shown by the

neural network might be achieved using a maximum likelihood routine by manipulating

class membership probabilities and/or by adjusting probability thresholds to relax the

membership requirements for individual classes. Such steps may require an apriori

knowledge of probabilities or may increase classification error. In any case, such tuning

was not effective in the example described here.

The neural network approach to classification is generally less rigid than the

traditional maximum likelihood procedure in that 1) there are no assumptions of

distributions of variables and relationships between them, 2) the network is easily trained to

learn the relationships between input and oulput, and 3) the classification produces both a

categorical value and a type of membership value for each pixel. It is recognized that there

is some loss of information and interpretabilty with the departure from statistical theory.

Additionally, computation time required for training the network is not trivial when

compared to the training of the ML classifier (i.e., computation of mean vectors and the

covariance matrix), although future hardware architectures should alleviate this problem. Of

course, training time as a proportion of the total classification time decreases with the

amount of data processed, so that if classes do not change and large images are being

classified, overall processing time should be similar for both methods.

The ability to interpret weights within the trained network provides a potentially

powerful tool for understanding the role of inputs and the geophysical processes they

represent in the making of decisions. Through an examination of the connection strengths

between input, hidden, and output units, it is possible to identify which inputs influence the

classification most, and which are redundant. These relationships are not always clear, and
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care must be taken in extendingtheir interpretationto physicalprocesses.It wasalso

shownthat ancillary information,even on a simplistic level, can improveclassification

accuracyandcanbeeasilyincludedin a network. Althoughtheexampleprovidedindicated

that maximumlikelihood resultscould be madeto agreemore closelywith the manual

interpretation,this wasachievedonly after trainingareaswereexpandedto include9% of

the testimage. Sucha degreeof trainingis impracticalfor remotesensingclimatestudies

because of the volume of imagery that must be processed. We emphasize that the data and

applications of interest for remote sensing of polar climate is not typical of applications

such as land cover mapping, which may be limited to a single image covering relatively

small areas with small within-class variance. This study does not show whether a neural

network offers any advantages for the latter type of analyses. The merits and drawbacks of

a neural network approach relative to others must therefore be considered based on the

particular problem at hand.

ACKNOWLEDGEMENTS

This work was supported by NASA grant NAG-5-898 and the NASA Polar Oceans

Branch. Thanks are due to W. Rossow and E. Raschke for providing AVHRR GAC data.



18

REFERENCES

Andress, K. and A. Kak, 1988. Evidence accumulation and flow of control. AI Magazine,

9 (2), 75-94.

Barr, A. and E.A. Feigenbaum, 1981, 1982. Handbook of Artificial Intelligence. 3 vols.

Los Altos, CA: William Kaufmann, Inc.

Borchardt, G.C., 1986. STAR: a computer language for hybrid AI applications. In

Coupling Symbolic and Numerical Computing in Expert Systems. J.S. Kowalik (ed.),

Amsterdam, The Netherlands: North-Holland.

Campbell, W.J. and L.H. Roelofs, 1984. Artificial intelligence applications for the remote

sensing and earth science community. Proceedings, Ninth Pecora Symposium on

Spatial Information Technologies for Remote Sensing Today and Tomorrow, Sioux

Falls, South Dakota.

Chandrasekaran, B., A. Goel, and D. Allemang, 1988. Connectionism and information

processing abstractions. AI Magazine, 9 (4), 24-34.

Ebert, E., 1988. Classification and analysis of surface and clouds at high latitudes from

AVHRR multispectral satellite data. Scientific Report #8, Dept. of Meteorology,

Univ. of Wisconsin-Madison.

Ebert, E., 1987. A pattern recognition technique for distinguishing surface and cloud types

in t he polar regions, J. Clim. Appl. Meteor., 26, 1412-1427.

Estes, J.E., C. Sailer, and L.R. Tinney, 1986. Applications of artificial intelligence

techniques to remote sensing. Professional Geographer, 38 (2), 133-141.

Holmes, Q.A., D.R. Nuesch, and R.A. Shuchman, 1984. Textural analysis and real-time

classification of sea-ice types using digital SAR data. IEEE Trans. Geosci. Rem.

Sens., GE-22 (2), 113-120.

Jackson, M.J. and D.C. Mason, 1986. The development of integrated geo-information



19

systems. Int. J. Rem. Seas., 7 (6), 723-740.

Key, J.R., 1988. Cloud analysis in the Arctic from combined AVHRR and SMMR data.

Ph.D. dissertation, Department of Geography, University of Colorado, Boulder, 180

PP.

Key, J.R., J.A. Maslanik, and R.G. Barry, 1989. Cloud classification using a fuzzy sets

algorithm: a polar example, Int. J. Rein. Seas. (in press).

Kitzrniller, C.T. and J.S. Kowalik, 1987. Coupling symbolic and numeric computing in KB

systems. AI Magazine, 8 (2), 85-90.

Kowalik, J.S. (ed.), 1986. Coupling Symbolic and Numerical Computing in Expert Systems.

Amsterdam, The Netherlands: North-HoUand.

Lauritsen, L., G.G. Nelson, and R.W.

TIROS-N/NOAA A-G radiometer,

and Atmos. Admin., Boulder.

Port, 1979. Data extraction and calibration of

NOAA Tech. Memor., NESS 107, Natl. Oceanic

Maslanik, J.A., J.R. Key, and R.G. Barry, 1989. Merging AVI-IRR and SMMR data for

remote sensing of ice and cloud in polar regions. Int. J. Rein. Seas. (in press).

Matsuyama, T., 1987. Knowledge-based aerial image understanding systems and expert

systems for image processing. IEEE Trans. Geosci. Rein. Seas., GE-25 (3),

305-316.

McClelland, J.L. and D.E. Rumelhart, 1988. Expl0ration_ in Parallel Di_l_rilpuled Processing.

Cambridge, Mass.: MIT Press, 344 pp.

McKeown, D.M. Jr., 1987. The role of artificial intelligence in the integration of remotely

sensed data with geographic information systems. IEEE Trans. Geosci. Rem. Sens.,

GE-25 (3), 330-348.

Minsky, M. and S. Papert, 1969. Perceptr0ns. Cambridge, MA: MIT Press.

Moravec, H., 1988. Sensor fusion in certainty grids for mobile robots. AI Magazine, 9



(2), 61-74.

Murthy, H. A. and S.

20

Haykin, 1987. Bayesian classification of surface-based ice-radar

technologies

Technology

102-103.

images. IEEE J. Ocean. Eng., OE-12 (3), 493-502.

Nandhakumar, N. and J.K. Aggarwal, 1985. The artificial intelligence approach to pattern

recognition - a perspective and an overview. Pattern Recognition, 18 (6), 383-389.

Nicolin, B. and R. Gabler, 1987. A knowledge-based system for the analysis of aerial

images. IEEE Trans. Geosci. Rein. Sens., GE-25 (3), 317-328.

NOAA, 1984. NOAA polar orbiler data user's guide. U.S. Department of Commerce,

National Oceanic and Atmospheric Administration, NESDIS, February.

Reddy, R., 1988. Foundations and grand challenges of artificial intelligence. AI Magazine,

9 (4), 9-21.

Ripple, W.J. and V.S. Ulshoefer, 1987. Expert systems and spatial data models for efficient

geographic data handling. Photogram. Eng. Rem. Sens., 53 (10), 1431-1433.

Ritter, N.D., T.L. Logan, and N.A. Bryant, 1988. Integration of neural network

with geographic information systems. GIS Symposium: Integrating

and Geoscience Applications, September 1988, Denver, Colorado,

Robinson, V.B. and A.U. Frank, 1987. Expert systems for geographic information systems.

Photogram. Eng. Rern. Sens., 53 (10), 1435-1441.

Rumelhart, D.E., J.L. McCleUand, and the PDP Research Group, 1986. Parallel Distribuled

Processing. Cambridge, MA: MIT Press, 547 pp.

Schwalb, A., 1984.

95.

Smith, T.R., 1984.

solving.

The TIROS-N/NOAA A-G satellite series, NOAA Tech. Mem., NESS

Artificial intelligence and its applicability to geographical problem

Professional Geographer, 36 (2), 147-158.



21

Smith,T., D. Peuquel,S. Menon,and P. Agarwal,1987. KBGIS II" a knowledge-based

geographicalinformationsystem.Int. J. Geog.Sys.,1 (2), 149-172.

Usery,E.L. and P. Altheide,1988. Knowledge-basedGIS techniquesappliedto geological

engineering.Photogram.Eng.Rein. Sens.,54 (11),1623-1628.

WMO, 1987. Reportof the ISCCPworkshopon cloud algorithmsin the polar regons,

WorldClimateResearchProgramme,WCP-131,WMO/TD-No.170,Tokyo,Japan,19-

21August1986.



22

FIGURES

Figure 1: The study area on July l, 1984 showing Novaya Zemlya (at #2) in the center

(75°N, 60°E), and the Kara (at #4 and #7) and Barents Seas (at #3). Sea ice covers

most of the Kara Sea as well as the area north 0oward lower left comer of image)

and east (left) of Novaya Zemlya. Total area covered is approximately (1250 kin) 2.

Shown are AVHRR channels 1, 3 and 4. Examples of each target surface/cloud class

are shown numbered as (1) LAND: snow-free land; (2) SNOW: snow-covered land/ice

cap; (3) WATER: open water; (4) ICE: sea ice; (5) LCLL, (6) LCLW, (7) LCLI: low

cloud over land, water, and ice, respectively; (8) MCLW, (9) MCLI: middle cloud

over water, ice; (10) HCLL (not shown), (11) HCLW, (12) HCLI: high cloud over

land, water, ice. These classes were identified through a manual interpretation of

AVI-LRR and SMMR data (see Figure 2).

Figure 2: Manual classification of the data shown in Figure 1. Classes are the same as in

Figure 1 with the addition of U: unclassified.

Figure 3" Neural network classification of the study area. Classes are the same as in

Figure 2. A pixel's class is the one in which it exhibited the largest membership value. A

pixe! is left unclassified if none of its membership values exceeds 0.4.

Figure 4: Supervised maximum likelihood classification of the study area. Classes are the

same as in Figure 2.

Figure 5: Connections between the input channels, hidden layer neurons, and the output

classes in the trained network. Output neurons represent the suface classes only.

Strength of the connections shown varies from 0.6 to 0.9 (on a scale of -1.0 to +1.0).

See also Tables 4 and 5.



Table 1

Percent of images classified by method and

training set.
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Method Training Set Image % Classified

ML TAI JULY 1 2%

ML TAI .JULY 4 3%

ML TA2 JULY 1 70%

ML TA2 JULY 4 53%

NN TAI JULY i 96%

NN TAI JULY 4 93%
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Table 2

Contingency table showing the percentage of pixels in the image classified in each of the twelve classes

by the manual interpretation (horizontal) and the neural network (vertical) using training set TAI.

Percentage = number of pixels in class / total number of classified pixels [12,251]. Total agreement

(sum along the diagonal) = 52.7%, based on 1% of the image used in training areas.

LAND

SNOW

WATER

ICE

LCLL

LCLW

LCLI

MCLW

MCLI

HCLL

HCLW

HCLI

LAND SNOW WATER

MANUAL CLASSIFICATION

ICE LCLL LCLW LCLI MCLW MCLI HCLL HCLW HCLI

2.92 0.01 0.00

0.00 1.01 0.00

0.58 0.58 14.41

0.01 0.06 0.00

0.03 0.00 0.00

0.00 0.03 0.00

0.01 0.01 0.04

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.18 0.00 0.00 0.24 0.00 0.00 0.04 0.00 0.00

0.00 0.00 0.00 0.18 0.00 0.04 0.15 0.00 0.00

2.47 0.00 4.04 0.58 1.40 0.27 0.05 0.15 0.03

6.17 0.00 0.00 13.46 0.00 0.08 0.01 0.00 0.08

0.00 0.00 0.00 0.39 0.00 0 00 0.13 0.00 0.00

0.00 0.00 4.90 0.03 3.01 0 i0 0.38 0.01 0.00

0.19 0.00 2.82 10.99 3.10 2 95 2.18 0.04 0.25

0.00 0.00 3.69 0.00 6.29 0 86 0.13 0.38 0.00

0.00 0.00 0.00 0.00 0.17 2 09 0.25 0.01 0.04

0.00 0.00 0.00 0.04 0.00 0 00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.76 0.19 0.00 2.40 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.17 1.45

TOTAL % 3.6 1.7 14.5 9.0 0.0 15.5 25.9 14.7 6.6 3.4 3.2 1.9

AGREEMENT 82.2% 59.4 99.7 68.5 0.0 31.7 42.4 42.7 31.8 0.0 75.9 78.0

(NN/TOTAL)
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Table 3

:ontingency table showing the percentage of pixels in the image classified in each of the twelve classes

by the manual interpretation (horizontal) and the supervised maximum likelihood procedure (vertical)

--using training set TA2. Percentage = number of pixels in class / total number of classified pixels

[9,374]. Total agreement (sum along the diagonal) = 84.8%, based on 9% of the image used in training

areas.

ML I

._LASS. I

_AND

SNOW

--_ATER

ICE

LCLL

_CLW

LCLI

ICLW

MCLI

--/CLL

[CLW

--._CLI

LAND SNOW WATER

MANUAL CLASSIFICATION

ICE LCLL LCLW LCLI MCLW MCLI HCLL HCLW HCLI

4.46 0.00 0.00

0.00 1.37 0.00

0.00 0.00 13.64

0.00 0.00 0.00

0.05 0.00 0.00

0.00 0.00 0.41

0.02 0.12 0.00

0.00 0.00 0.08

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.03

0.00 0.00 0.02

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00

0.05 0.00 1.46 0.00 0.08 0.00 0.00 0.00 0.00

7.56 0.00 0.00 0.23 0.00 0.02 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 10.60 0.00 2.89 0.00 0.00 0.02 0.00

1.09 0.00 0.17 29.38 0.07 0.i0 0.12 0.00 0.00

0.00 0.00 3.92 0.00 4.35 0.00 0.00 0.02 0.00

0.00 0.00 0.02 0.33 0.36 5.79 0.45 0.07 0.05

0.00 0.00 0.00 0.13 0.00 0.05 1.67 0.00 0.00

0.00 0.00 0.64 0.00 1.54 0.00 0.00 3.29 0.00

0.00 0.00 0.00 0.05 0.00 0.81 0.00 0.02 2.71

TOTAL % 4.5% 1.5 14.2 8.7 0.0 16.8 30.1 9.3 6.8 2.2 3.4 2.8

LGREEMENT 98.5% 91.9 96.1 86.9 0.0 63.1 97.6 48.8 85.5 74.6 96.2 98.2

(ML/TOTAL)



Table 4

Connections between the input channels and the hidden

layer in the trained neural network.
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Hidden Layer

(Neuron number)

Input Channel Connections

(AVHRR: 1,2,3,4,5; SMMR: 18,37)

0 i, 2, 4, 5

1 NONE

2 5, 18, 37

3 4, 5, 18

4 2, 18

5 NONE

6 4, 5, 18, 37

7 2, 3

8 I, 18

9 2, 3, 4, 5



Table 5

Connections between the output class and

the hidden layer in the trained neural network.
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Output Layer

(Class)

Hidden Layer

(Neuron number)

LAND 2, 3, 6

SNOW 0

WATER i, 3, 5, 6, 7, 8, 9

ICE I, 3, 5, 8

LCLL 6

LCLW 0, 9

LCLI 9

MCLW I, 4, 5, 7, 9

MCLI 0, 4, 5, 9

HCLL 2, 4, 7

HCLW I, 4, 5, 7, 8

HCLI 0, 3, 4, 8
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ABSTRACT

Automated analyses of satellite radiance data have concentrated heavily on low and

middle latitude situations. Some of the design objectives for the International Satellite

Cloud Climatology Project (ISCCP) cloud detection procedure such as space and time

contrasts are used in a basic algorithm from which a polar cloud detection algorithm is

developed. This algorithm is applied to Arctic data for January and July conditions. Both

Advanced Very High Resolution Radiometer (AVHRR) and Scanning Multichannel

Microwave Radiometer (SMMR) data are utilized. Synthetic AVHRR and SMMR data for

a seven-day analysis period are also generated to provide a data set with known

characteristics on which to test and validate algorithms. Modifications to the basic

algorithm for polar conditions include the use of SMMR and SMMR-derived data sets for

the estimation of surface parameters, elimination of the spatial test for the warmest pixel,

the use of AVHRR channels 1 (0.7pm), 3 (3.7pm), and 4 (lllam) in the temporal tests and

the final multispectral thresholding, and the use of surface class characteristic values when

clear sky values cannot be obtained. Additionally, the difference between channels 3 and 4

is included in the temporal test for the detection of optically thin cloud. Greatest

improvement in computed cloud fraction is realized over snow and ice surfaces; over open

water or snow-free land, all versions perform similarly. Since the inclusion of SMMR for

surface analysis and additional spectral channels increases the computational burden, its use

may be justified only over snow and ice-covered regions.

1. INTRODUCTION

The important role that polar processes play in the dynamics of global climate is

widely recognized [Polar Research Group, 1984]. The variation of cloud amounts over

polar ice sheets, sea ice, and ocean surfaces can have important effects on planetary albedo

gradients and on surface energy exchanges [Barry et al., 1984; Shine and Crane, 1985].
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Cloud coverexertsa major influenceover the amountof solar and longwaveradiation

reachingthesurface,and is linked to the seaice througha seriesof radiative,dynamical,

thermodynamicand hydrologicalfeedbackprocesses[Saltzmanand Moritz, 1980]. Extent

and thicknessof sea ice influencesoceanicheat loss and surfacealbedowhich thereby

influencesglobal climatevia the ice-albedofeedback[Budyko, 1969]. In turn, sea ice

extentis controlledat leastin partby radiativeinputfrom above.

Previousresearchin global cloud analysishas made clear the needfor cloud

retrievalproceduresspecificto particularclimateregimes[e.g.,Rossow,1989;Rossowet

al., 1989a,b]. Currentproceduresfor automatedanalysesof satelliteradiancedatahave

beendevelopedfor low andmiddlelatitudesbut their applicationto polarregionshasbeen

largelyunexplored. Those that have been applied to polar data often fail in the polar

regions for a number of reasons including: snow-covered surfaces are often as reflective as

the clouds, the thermal structure of the troposphere is characterized by frequent isothermal

and inversion layers; the polar darkness during winter makes data collected in the visible

portion of the spectrum largely unusable; satellite radiometers operate near one limit of their

performance range due to extremely low surface temperatures and solar illuminations; there

is a maximum concentration of aerosols in spring when the solar zenith angle is large

increasing scattering of visible energy; and rapid small-scale variations - which in lower

latitudes signify changes in cloud cover - occur on the surface as a result of changes in

snow and ice distributions so that clear scenes are much more variable here than in lower

latitude regions.

Generally not all of these difficulties are encountered at any one location. However,

because they can result in rapid small-scale variation from one location and time to another,

a complex analysis method that can recognize and cope with these situations is necessary

[WMO, 1987]. The purpose of this paper is to present a cloud detection algorithm

specifically for Arctic AVHRR data, based on ideas of the International Satellite Cloud



3

ClimatologyProject(ISCCP)algorithm[Rossowet al., 1985]. The procedureusedas a

starlingpointin this paperis a testversionthatsharessomeof the importantfeaturesof the

final ISCCPversion[Rossowet al., 1988],suchas spaceand time contrast,but also has

some significantdifferences. Both summerand winter data are examined,although

emphasisis placedon the summeranalyses. Additionally,emphasisis placedon Arctic

analyses, although many of the ideas also apply to Antarctic data.

2. BACKGROUND

Techniques for cloud detection from satellite data have been developed for use with

visible, near-infrared, and thermal data, and have been based on threshold methods, radiative

transfer models, and statistical classification schemes.

important methods is given here; an historical listing

Rossow et al. [1989b].

A brief summary of some of the

of cloud algorithms is given in

Cloud analysis methods which have included models of the physical properties

involved in cloud formation have been developed by Shenk and Curran [1973], Shenk et al.

[19761, Susskind et al. [1987], and d'Entremont [1986]. Bispeclral threshold methods have

been developed by lnoue [1987a], Minnis and Harrison [1984], Minnis et al. [1987], and

applied to polar data by Inoue [1987b]. The effect of inaccurate snow cover information

on retrieved cloud amount in the USAF nephanalysis system was examined by McGuffie

and Robinson [1988].

To aid in the determination of clear sky radiances, the spatial aspects of cloud decks

and ocean surfaces were examined by Coakley and Bretherton [1982], who developed the

spatial coherence method. This was extended to two-layer systems by Coakley [1983] and

Coakley and Baldwin [1984]. The spatial coherence method has also been applied by Crane

and Anderson [1984] and Ebert [1989] for the analysis of polar clouds from AVHRR data.

A variety of histogram and coherence threshold methods were tested by Saunders [1986].



Raschke [1987] developed decision trees for polar cloud detection with AVH R data.

Statistical classification procedures, most commonly maximum likelihood and

Euclidean distance methods, have been applied to cloud analysis by Desbois et al. [1982],

Desbois and Seze [1984], Bunting and Fournier [1980], Bolle [1985], Harris and Barrett

[1978], Pairman and Kittler [1986], Ebert [1987], Condal and Le [1984], Parikh [1977],

Garand [1988], Welch et al. [1988], and Key et al. [1989a,b]. A further review of cloud

detection procedures is given in Rossow [1989]. Global scale application of one cloud

detection scheme for the determination of suface and cloud parameters detailed in Rossow et

al. [1989a,b].

The International Satellite Cloud Climatology Project (ISCCP) to map clouds with

satellite data began in July 1983. Its goal is to provide a uniform global climatology of

satellite-measured radiances and from these to derive an experimental climatology of cloud

radiative properties. As a basis for developing the ISCCP algorithm, Rossow et al. [1985]

compared six cloud algorithms. However, the algorithms were not compared in the polar

regions, and a separate study was organized to focus specifically on polar cloudiness

[WMO, 1987]. The current ISCCP algorithm is composed of a series of steps, each of

which is designed to detect some of the clouds present in the scene. The general idea in

cloud detection is to first isolate the less variable clear scene radiances in the data and then

identify the clouds by their alteration of these radiances (compare to Rossow et al. [1989a]).

Spatial and temporal variation are used in the detection of clear pixels; clear sky composite

maps (over five day periods) are then constucted. Finally, each pixel is compared to the

clear sky radiances to determine if cloud is present. It has been recognized that reliable

detection of cloudiness in the polar regions with the current ISCCP algorithm is particularly

difficult, and it has been recommended that the study of clouds over polar regions be

continued [WMO, 1988].
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3. DATA

Satellite data for the polar regions are collected by the Tiros-N (NOAA 6 et seq),

Nimbus, and Defense Meteorological Satellite Program (DMSP) satellites. Visible and

thermal data from the NOAA-7 satellite are the primary data source for this study. Passive

microwave data from the Nimbus-7 platform is used to aid in surface parameterization.

DMSP visible and thermal imagery are used for validation.

The Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA-7

polar orbiting satellite is a scanning radiometer that senses in the visible, reflected infrared,

and thermal (emitted) infrared portions of the electromagnetic spectrum (l: 0.58-0.68_m, 2:

0.73-1.0/_tm, 3: 3,55-3.93pm, 4: 10.3-11.3pm, 5: 11.5-12.5pm) witb a nadir resolution of 1.1

_. Global Area Coverage (GAC) imagery is a reduced-resolution (3x5 kin) product

created through on-board satellite processing.

elsewhere [e.g., Schwalb, 1978].

First-order calibration of the AVHRR

Construction of GAC data is described

GAC data was performed following the

methods described in the NOAA Polar Orbiter Users Guide [NOAA, 1984] and Lauritsen et

al. [1970]. Brown et ai. [1985] provide additional information on calibration. Channels 1

and 2 were converted to approximate spectral albedo in percent. Channels 3, 4, and 5 were

converted to radiance in milliwatts/(m2-steradians-cm) then to brightness temperature in

Kelvins [NOAA, 1984]. AVHRR channel 3, at 3.7pm, records both reflected and emitted

energy. For some analyses, a separation of these two components may be useful [Raschke,

1987; Allen et al., 1988]. The channel 3 albedo was approximated by subtracting the

thermal radiance that would be emitted in this channel from a blackbody radiating at the

brightness temperature measured in channel 4. Emissivities in both channels are assumed

equal since no a priori information exists about the cloud and surface types contained in the

data.

The typically low water vapor content in the polar atmosphere and the low physical
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temperatures reduce most atmospheric effects to a point where they may be neglected for

the analyses performed here. Approximate corrections for solar zenith angle in channels 1

and 2 were accomplished through a division of the albedo by the cosine of the zenith angle.

Bidirectional reflectance and emittance may also affect the speclral characteristics of surfaces

and clouds but have been studied extensively only for snow [e.g., Dozier and Warren, 1982;

Robock and Kaiser, 1985; Steffen, 1987]. In the visible channels, bidirectional reflectance

may be useful in distinguishing haze from cirrus [Gerstl and Simmer, 1985]. Again,

correcting for this effect would require a priori knowledge of surface and cloud types in the

data, therefore, no corrections for these effects are made.

The Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) is a conically

scanning radiometer that senses emitted microwave radiation both vertically and horizontally

polarized in five channels: 6.6, 10.7, 18.0, 2t.0, and 37.0 GHz. Instantaneous field of view

of the sensor varies with channel, ranging from 148x95 km for the 6.6 GHz channel to

55x41 km and 27x18 km for the 18 and 37 GHz channels, respectively. The 18 and 3"7

GHz channels ,are employed here. No distinction is made between day, night, and twilight

orbits; data from overlapping orbits are averaged to yield a daily value. Sea ice

concentration was calculated from SMMR data using the operational NASA Team algorithm

[Cavalieri et al., 1984]. The 18 and 37 GHz polarization and gradient ratios are used to

calculate ice type (i.e. first-year or multiyear) and concentxation. A simple gradient ratio

threshold is included to reduce the effects of ocean surface spray and foam on ice

parameterization [Gloersen and Cavalieri, 1986].

AVHRR and SMMR data are merged in digital form to a polar stereographic grid.

This projection yields equal-area pixels true at 70 ° latitude with a five kilometer pixel size,

a slight degradation of the GAC resolution. The SMMR data were converted to the five

kilometer cells by simple duplication of pixels. Further details are given in Maslanik et ai.

[1988].
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Three areas of the Arctic are examined (Figure 1). One area is centered on the

Kara and Barents Sea extending north to the pole and south to Norway and the Siberian

coast. The second area covers most of the Canadian Archipelago and Greenland, and

extends north to the pole. The third area extends from the coast of Norway to Ellesmere

Island. A seven-day summer series (July 1-7, 1984) of areas 1 and 2, and a winter series

(January 6-12, 1984) of area 3 were examined. These data are part of an ISCCP test data

set. While covering only one-third of the Arctic Basin, they include representative samples

of all surface types found in the Arctic: snow-covered and snow-free land, sea ice of

varying concentrations, open water, and permanent ice cap. In fact, these areas during the

luly period present particularly difficult conditions for cloud algorithms to work with; sea

ice is moving, snow is melting and ponds form, and the extensive coastlines exhibit mixed

temperature regimes. In the study areas refleclances were found to vary significantly over

one week intervals and north-south temperature gradients were observed. A portion of each

study area is shown in Figure 2 where AVHRR channel 1 (visible) data on July 3, 1984 are

shown for study areas 1 and 2; study area 3 on January 8, 1984 is displayed in AVHRR

channel 4 (thermal).

These conditions are usual for summer in the Arctic, as are the pressure patterns

which occurred. Surface pressure maps constructed from Arctic Ocean buoy data taken

from Colony and Munoz [1986] provide an overall synoptic picture of daily weather which

resembles the mean monthly pattern [Serreze and Barry, 1988; Gorshkov, 1983]. Conditions

during the January study period are also similar to the monthly mean pattern. Although

correlations have been observed between synoptic pressure systems, cloud amount, and

cloud type [Barry et al., 1987], detailed cloud climatologies for the Arctic are not available

and it is therefore more difficult to make such a statement concerning cloud cover.

Visible (0.4-1.11am) and thermal (10.5-12.51am) imagery from the DMSP - a near-

polar orbiter with a resolution of 2.7 km for orbital swath format images - was used for
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manualcomparisonsof cloud type and amount and surface conditions in cloud-free areas.

Other ancillary data include surface temperatures from tile European Centre for Medium

Range Forecasting (ECMWF), and sea ice albedo from Scharfen et al. [1987] which are

derived from a combination of DMSP imagery and the NOAA/Navy ice charts.

3.1 Synthetic Data Sets

In order to test the sensitivity of the various cloud algorithms, a control data set

with known characteristics was needed. A synthetic data set was developed which consists

of seven days of AVHRR data (channels 1, 3, 4), three days of SMMR brightness

temperature data (every other day; 18 and 37 GHz vertical polarization), SMMR-derived sea

ice concentrations, and a land mask. The procedure followed is to first generate the surface

and cloud type maps for each day of the seven day period. Surface types are snow-covered

and snow-free land, open water, and sea ice. Cloud layers are classified as low, middle,

and high, where levels are defined by AVHRR channel 4 temperatures (T) as follows: low

cloud T>265 K, middle cloud 245_<T<265 K, and high cloud T<245 K. The minimum and

maximum allowable sizes of surface 'objects' (i.e., a single surface type surrounded by

other surface types) for the first day, and cloud objects for each day are specified. An

object is generated whose dimensions are randomly chosen within the restricted range, and

the class of the object is randomly assigned (uniform random number generator).

Regions are then filled with data for each AVHRR and SMMR channel and for sea

ice concentration using empirically-derived statistics. Data were based on class characteristic

means and standard deviations computed from training areas. Values for each pixel in each

channel were produced using a Gaussian random number generator [Ebert, 1988; Garand,

1988]. Each artificially-generated element of class j is a vector, v: of d features:

vj = laj + D.Aj

where laj is the class mean vector of length d, Xq is a vector of random deviations for each
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feature selected from the multivariate Gaussian distribution of deviations, Aj is tile lower

triangular matrix decomposed from the d x d class covariance matrix, Ej (which is

symmetric and positive definite), such that

A._j T = Ej

The values from the Gaussian random number generator have a zero mean and unit variance

and are constrained to be in the range of -3 to +3 which include approximately 99% of the

data in a normally distributed population.

In the synthetic images, the surface map for the first day and cloud maps for all

days are created with this procedure. The surface maps for the third and fifth days,

however, are modified versions of the first day. Snow and ice pixels are allowed to melt

into land and water, respectively; ice pixels may advance into open water areas and snow

may fall on land. The evolution is designed such that approximately 68% of the decisions

resulted in an unchanged local area and 32% resulted in either an advance or a retreat.

4. SPECTRAL FEATURES AND CLASSES

Spectral features examined for each pixel are channels 1, 2, and 3 albedos, channels

3, 4, and 5 brightness temperatures, ratios of channels 2 and 1, and the differences between

channels 3 and 4 and 4 and 5. The ratio of channel 2 to channel 1 or the difference

between channels 2 and 1 enhances vegetation signals as well as snow and sea ice

underneath clouds. The reflectance of cirrus clouds is greater than that of snow in the near-

IR (channel 2) due to differences in particle effective mean radius, the albedo being higher

for smaller grains [Wiscombe and Warren, 1980]. Channel 2 wavelengths are less affected

by aerosols than are channel 1 responses; snow-free land surfaces have a higher albedo in

channel 2 [Saunders, 1986]. Because snow- and ice-covered surface albedos decrease with

increasing wavelength while cloud albedos decrease only slighlly over the same range,

channels 1 and 2 of the AVHRR are potentially usefld for this discrimination.
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Since cirrus clouds have higher transmissivities at channel 3 wavelengths than for

channels 4 and 5 [Hunt, 1972], corresponding brightness lemperatures are higher due to the

greater contribution of radiation to the total upwelling radiance by wanner surfaces beneath

the cirrus. Therefore, channel 3 temperatures will generally be higher than those of the

other thermal channels, day or night. This is particularly true for optically thin clouds, and

has been modeled by Olesen and Grassl [1985]. However, the effect is diminished or even

reversed when 3.71am emissivities are low, as they are for low water clouds and fog.

During the day, the contribution of reflected energy to channel 3 is very low for clear sky

pixels. The albedo of low and middle cloud in this band is much higher, due to a particle

size effect. Therefore, channel 3 values will be similar to those measured in chamnel 4 for

clear sky areas. Channel 5 is similar to channel 4, except that channel 5 radiation is more

sensitive to water vapor. Therefore, in clear, cold atmospheres brightness temperatures

measured by the two channels are similar, but channel 5 temperatures may be as much as

three percent lower in moist almospheres [d'Entremont and Thomason, 1987]. The

brightness temperature difference between channels 4 and 5 is close to zero for

stratocumulus but large for cirrus due to differences in emissivities.

Four surface and three cloud classes are analyzed. Surface types are snow-free land,

snow-covered land/ice cap, open water, and sea ice. All pixels with ice concentration of at

least 15% are classified as sea ice. While cloud detection results may be improved with

more than one ice class on a local scale, the use of a single ice class did not produce

significantly different results over the entire data set. Cloud classes are defined by

brightness temperature in AVHRR channel 4, assumed to represent temperatures at the top

of optically thick cloud layers, and encompass the same three temperature ranges as in the

synthetic data (low, middle, high).
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5. BASIC ALGORITHM

The basic cloud detection algorithm upon which the final polar procedure will be

built is based on ideas presented by Rossow et al. [1985] as design criteria for the ISCCP

algorithm. In particular, space and time contrast tests are two of the major steps used in

both early and current ISCCP algorithms, and are employed here. Spatial and temporal

variation are used in the detection of clear pixels; clear sky composite maps are then

constucted. Finally, each pixel is compared to these clear sky radiances to determine if

cloud is present. The algorithm assumptions are that cloud scene radiances are more

variable in time and space than clear scene radiances and cloudy scenes are associated with

larger visible channel and smaller infrared radiances than clear scenes. This algorithm

version was tested by ISCCP but is not the final version. The major steps used here are

summarized in Figure 3(a) and are:

Spatial and temporal variation. The image is divided into cloudy and "undecided"

categories based on cold and warm pixels. If a pixel is much colder (defined later) than

the warmest pixel in a small region ((100 km) 2 over land and (300 km): over ocean), it is

labeled "cloud". Otherwise, it is labeled "undecided".

identified. Only thermal data are used in this step.

Pixels are then compared to the day before

High and middle level clouds are

and the day after for changes in

temperatttre. If the middle day is much colder than either day, is it is labeled "cloud". If

the variation is small, it is labeled "clear". Those pixels exhibiting intermediate variability

are labeled "undecided". Again, only thermal data are used in this step. High and middle

clouds are most easily recognized. The class of a pixei based on these two steps is given

in Table 1.

Compositing. The mean and extremum radiances for the clear pixels ,are calculated

over 5 and 30 day periods. Statistics are calculated for a 3x3 compositing cell centered on

the pixel of interest over the time period; i.e., 45 pixels are used for the 5 day period. The
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number and mean of clear pixels only is recorded as well as the maximum temperature ,and

minimum albedo of all pixels, regardless of previous labeling.

The clear sky radiances for each pixel are then determined. If, as determined by

the statistical tests below, the compositing cell associated with a pixel is not variable, the

clear sky value is the mean value over the period, otherwise the extremum (minimum

visible and maximum thermal) values are used. The purpose of this and the previous step

are to find the most accurate values of clear sky conditions, therefore the lests are very

strict and will probably result in an overestimate of cloud amount.

Final threshold. The data are compared to the clear sky values modified by a

threslnolct amotmt. Those that differ in either the thermal or visible channels by more than

the threshold amount are labeled as cloud. This test is less strict than the previous one

since the purpose is to detect cloudy conditions rather than clear.

6. MODIFICATIONS

This basic algorithm has been adjusted in order to deal with the problems cited in

Section 1. Major modifications suggested include the use of snow and ice data sets for the

estimation of surface parameters, elimination of the spatial test for the wannest pixel in a

subregion, the use of AVHR channels 1 (0.7_tm), 3 (3.71am), and 4 (lllam) in the

temporal tests, statistical tests for compositing, and the final multispectra! thresholding, and

the use of surface class characteristic values when clear sky values cannot be obtained.

Additionally, the difference between channels 3 and 4 is included in temporal tests for the

detection of optically thin low cloud and cirrus. The steps of the modified algorithm are

shown in Figure 3(b). Some of these modifications require further explanation.

6.1 Surface Types

Surface types ,are determined with a land/ice cap mask, SMMR data, and SMMR-
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derived sea ice concentralion. If tile pixel is land, then a SMMR test is applied to

determine if the land is snow-free or snow-covered. Snow-covered land exhibits a higher

18 GHz brighlness temperature than that of the 37 GHz channel, and the vertical

polarization is less variable than the horizontal for land (unless wet). This relationship may

not hold over an ice cap, so a mask for permanent ice cap (e.g., Greenland and Novaya

Zemlya) is included, and ice cap is then treated as snow. Problems with this method occur

in coastal areas where this relationship may be observed even without the presence of snow.

Therefore a coastal zone is defined to be approximately 20 km from the edge of the coast

both inland and seaward. Finally, if the pixel is not land and if the sea ice concentration is

less than 15%, the pixel is labeled water, otherwise it is sea ice.

The basic algorithm assumes a constant surface type over the five-day period.

However, snow melt, snowfall, and ice advection cause changes in albedo, emissivity, and

temperatures which create difficulties in cloud detection and alter clear sky composite

values. Therefore, pixels in which the surface changes during the period are flagged, and

receive more than one clear sky value in the compositing step. Since a 30 day sequence of

data was not available, these values are likely to be derived from a small sample of clear

pixels, and therefore may not be reliable.

6.2 Spatial and Temporal Variation Tests

One of the basic assumptions of the algorithm - that the surface is warmer than the

cloud - is often violated in summer polar data and is commonly incorrect during the winter.

It is not uncommon in summer for low cloud to be at the same or higher temperature than

the underlying snow or ice surface. In winter it is not uncommon for all cloud but cirrus

to be wanner than the surface. While use of a spatial test may be possible, it would

require knowledge of tile temperature profile. This is assumed not to be the case and, for

this reason, the spatial variation test for the warmest pixel in a subregion was eliminated
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entirely.

In the temporal variation test of the initial classification, where pixel temperatures

are compared to the day before and after, if a pixel is much colder than either day (by the

amount in Table 2, "Cloud") then that pixel is labeled cloud. If the albedo and

temperatures are the same as either day (Table 2, "Clear") in channels 1, 3, and 4 then the

pixel is labeled clear. Otherwise, it is labeled undecided. Obvious problems occur when

warm, low clouds move into or out of a region where the surface temperature is within the

"clear" range of the cloud. These cloudy pixels will consequently be labeled clear in this

step, and will ultimately be labeled clear and used in the compositing step to determine

clear sky radiances. Since thermal-only tests fail to label these pixels correctly, channels 1

and 3 data were also used in the temporal variation test. Values in Table 2 were derived

experimentally except for channel 4 land and ocean temperatures which are taken from

ISCCP specifications.

To reduce the computational butden, a test for a large difference between channels 3

and 4 is done. If the difference is greater than 3.5 K [Saunders, 1986; Olesen and Grassl,

1985], the pixel is labeled cloud and is not compared to the day before and after.

Spatial/temporal tests which included the entire seven-day period were also tested.

However, problems with the warmest pixel being low cloud were too frequent to justify

their use.

6.3 Compositing

To determine clear sky composite values, distributions of those pixels initially

labeled clear are tested for cloud contamination. The idea is that if a large enough sample

of clear values for a given location is available, an average of this sample will provide a

better clear sky composite value than the extrema radiances. Conversely, if only a few

clear values were obtained in the initial classification, the extrema provide tile most reliable
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estimateuponwhich to base the final cloud detection. "Populations" against which to test

compositing cell statistics are based on class characteristic means and standard deviations for

each surface type are computed and updated with each region analyzed. These values are

initially set to those determined for the previous 5-day period, or from training area

statistics based on manual interpretations if no previous data are available. (Class

characteristic values for polar surfaces and clouds in AVI-IRR data are also given in Ebert

[1988, 1989].) Those clear sky composite mean values which pass the statistical tests are

incorporated into the new class characteristic values.

The statistical tests are designed to determine the likelihood that the clear pixels in

each compositing cell are in fact all clear. This is done by examining the mean, standard

deviation and extremum of the distributions of radiances in each cell. The procedure

followed here first checks the number of clear pixels in the compositing cell (maximum 45).

The cutoff value for too few pixels is a sample size such that the population mean could be

predicted from the sample mean to within one population standard deviation (arbitrary) at a

specified confidence level; e.g., at a level of confidence of 0.99, this criterion requires that

sarnple statistics and further tests be based on at least seven clear pixels. If the number of

clear pixels is less than seven, then the maximum thermal and minimum visible values are

used in the clear sky composite, assuming that the probability of them coming from the

appropriate population (t-test) is greater than the specified level of significance.

If, on the other hand, the number of clear pixels is sufficient, the probability that

the minimum thermal and maximum visible values come from the population is also tested.

If the probability of obtaining either a smaller thermal or larger visible value is less than

the significance level, cloud contamination is assumed and the opposite extrema are used as

the clear sky composite values. Otherwise, a t-test is perfomed on the means of the

composite cell and the class characteristic values where the null hypothesis is that the means

of the respective populations are equal. If the null hypothesis in both tests is not rejected,
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then the mean values are used as the clear sky composite. Otherwise, extrema are used.

The assumption of Gaussian distributions thai these tests carry may be violated if

data are examined over large spatial and temporal scales. In such cases, an informational

class such as land albedo may comprise more than one statistical class. It is therefore

important that class characteristic values be computed for relatively small geographic areas

and time scales. In this study, radiance means and variances are derived from (250 km) 2

areas over five-day periods.

If the statistical tests during compositing fail, the clear sky value for a given

location is assigned a value based on its spatial neighbors or class characteristic value. The

neighborhood of pixels with the same surface type is searched and the first clear value

found of the same surface type is used. The maximum search radius is determined by an

autocorrelation function derived for each surface type in this data set (up to a radius of 12

pixels or 60 km). If no value is found within this radius, the clear sky value assigned is

based on the class characterislic values.

6.4 Final Thresholds

The final thresholding step utilizes AVHRR channels 1, 3, and 4. Channel 3 is

used only ff the surface is sea ice or snow/ice cap, and is intended to detect low cloud.

Middle and high clouds will normally be detected over any surface with thermal data alone.

Thresholds for this step were derived empirically and are given in Table 3. They are

relatively large so that the algorithm yields a conservative estimate of cloud fraction, in part

adjusting for partially covered pixels. Some methods of cloud cover analysis have atlemped

to set thresholds which account for this condition [e.g., Coakley and Bretherton, 1982;

Arking and Childs, 1985; Coakley, 1987]. However, radiances similar to those for partially

covered pixels can also be produced by optically thin clouds, and there is currenlly no

reliable method of distinguishing between these two effects [Rossow et al., 1985].
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Therefore, the degree to which pixel values differ from the clear sky values in each channel

is retained by the algorithm and can be used as an indication of the reliability of computed

cloud fraction. This procedure follows the one currently employed in the ISCCP algorithm

[Rossow et al., 1988].

For analyses presented here, a pixel is labeled cloud if it varies from the clear sky

value by more than the threshold in any channel. The importance of this disjunction is

illustrated in Figure 4 where the differences between cloudy pixel radiances and the radiance

of the underlying surface - taken to be the clear sky composite value - are plotted for each

channel. The data are based on summer samples taken imagery containing a variety of

surface types and cloud distributions. Zero differences are found along the line in each

plot. Of particular interest are the points near this line, representing optically thin clouds

over ice or snow in channel 1, and low (possibly inversion) clouds in the channel 4 plot.

With both a reflected and thermal component in channel 3, there are many possible

combinations of surface and cloud top temperatures and refleclivilies which would give rise

to similar cloud and surface radiances in the middle plot. Over snow and ice, the most

common are: optically thick low and middle cloud with reflectivity and temperature similar

to the surface, thick cloud with higher reflectivity but lower brightness temperature, or thin

low and middle cloud.

6.5 Winter Analysis

Surface temperatures over land in January 1984 were typically 225-235 K, ocean

(open and thin ice) in the southern portion of the study area was 260-275 K, sea ice was

231-235 K, and clouds ranged from 215 to 258 K. In the final threshold step, the

assumption that clouds are colder than the surface was eliminated and the test was modified

so that a difference from the clear sky composite value in either direction signals a cloudy

pixel. Additionally, temperatures within the broadly-defined surface classes vary
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considerablyacrossthe image, in particular for Greenland snow/ice cap due to elevation

change and open water from the Norwegian Sea north to Svalbard. Class characteristic

values are no longer reliable, so statistical tests are based only on the range of the

extremum.

7. TESTING AND ALGORITHM COMPARISON

Three algorithm versions are compared. The original algorithm (herein "Basic-VT")

developed for low latitude summer conditions recognizes only two surface types: land and

water. No SMMR or sea ice concentration data are employed. Spatial/temporal tests in the

initial classification step are thermal only (AVHRR channel 4), and a visible/thermal

bispectral threshold test (chammls 1 and 4) is used in the final classification. This version

with a thermal-only threshold test was also used to simulate winter applications ("Basic-T").

The algorittun with modifications decribed in the previous section is the third version tested

("Modified").

Four regions from the AVHRR imagery and four regions from the synthetic data

sets, all summertime, are used as test data. Each region is 50x50 pixels or (250kin) 2 ,and

differs in surface and cloud types and proportions. The synthetic data set image contains

surface areas with 250 to 500 km as the minimum dimension ("objects" are rectangular).

Cloud sizes and distributions changed from day to day, with the minimum dimension

ranging from 20 to 300 km. Surface proportions changed in both data sets by up to 20%.

These changes are due to sea ice movement and melting. The surface/cloud types and

proportions are given in Table 4.

Cloud fractions computed by each algorithm for each region and day are given in

Tables 5 and 6. Also given in the table are the number of clear pixels used in the

compositing step for each region and version. The actual cloud amount is shown for

synthetic data sets, determined by counting the number of pixels in the region assigned to a
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cloudclass. A manualinterpretationwasdoneutilizing all AVHRR,SMMR,andSMMR-

deriveddatasets. Due to the subjectivenaturethis procedure, however, measured cloud

fraction should be used only as a "standard" by which to judge algorithm performance and

should not be treated as an absolute.

All versions of the algorithm perform best over land and water. Snow and ice

remain the problem areas although the modified versions performed best under these

conditions. When cloud amounts are high (more than 80%), all versions compute cloud

fraction to within approximately 5% of each other. When cloud amounts are low, the

modified version is more accurate, although cloud fraction was often too high. In the

actual data, this is at least in part due to possible discrepancies in the manual interpretation,

as described above. In the synthetic data, this is probably due to the fact that clear sky

areas are filled with values in the range of the mean plus or minus three standard deviations

(following a Gaussian probability function), so that extreme values may be beyond threshold

cutoffs and will consequently be labeled as cloud. Final thresholds are generally between

two and three times the standard deviations used in the generation of synthetic images.

The basic algorithm versions often overestimate cloud amount. This is common

over ice where, in the bispectral threshold test, the threshold for water is used. This aibedo

threshold is too small to account for variation in sea ice aibedos, and consequently many

clear pixels were mistaken as cloud. A related situation is that the basic version often

makes an accurate assessment of cloud fraction, but for the wrong reason. For example,

one sea ice region had over 70% of the cloud cover as very thin cloud, possibly haze.

Channels 1 and 4 alone did not detect this condition, yet the threshold-determined cloud

amount for Basic-VT is similar to the amount determined manually. Here again, albedo

contributions from the thin cloud are insignificant, so that the algorithm is labeling cloud by

the threshold step what it sees in channel 1 as sea ice. The snow and ice data sets used in

the modified versions solve these problems by providing appropriate thresholds.
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Root meansquareand meanabsolutedifference errors given in Table 7 illustrate

that the modified version was most accurate in computing cloud fraction for both data sets.

The thermal-only version performed reasonably well with the synthetic data set, at least in

part for reasons explained above.

8. APPLICATION

The modified version of the algorithm was next applied to the Arctic study areas.

Surface albedos determined over the five-day compositing period for the two summer study

areas, which overlap the winter area, are shown in Figure 5. Values are averages over each

quarter of the 250x250 km analysis regions. Sea ice albedo from Scharfen et al. [1987] is

shown in Figure 6 ,and is in general agreement with Figure 5 for sea ice. A direct

comparison is complicated by the difference in resolution, the data in Figure 6 being much

coarser and for sea ice only, and because those data are: integrated over a broader spectral

band. They are therefore expected to be somewhat lower than the albedo measured by

AVHRR channel 1, depending on the amount of snow cover present. Composited surface

temperatures are shown in Figure 7 for AVHRR channel 4. Since surface emissivities in

channel 4 (11 m) are near unity, the temperatures presented may be considered as estimates

of physical temperatures. These are similar to the ECMWF data presented in Figure 8.

Differences are due to the averaging over quarter regions, and to the adjustment of

temperatures over Greenland to sea level in the ECMWF data. Winter composite

temperatures show greater departures from the meteorological data than the summer values,

probably due to invalid lapse rate assumptions in the construction of the ECMWF data.

Cloud fraction for the third day of the analysis period for each study area is shown

in Figure 5 and compares favorably with a manual interpretation of the DMSP imagery (not

shown) and the images presented in Figure 2. The largest differences occur over sea ice

where low cloud cannot be distinguished in the DMSP visible and thermal channels alone.
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In these cases the DMSP-estimaled cloud fraction is too small, as cloud is mistaken as sea

ice. Similarities can also be seen between the computed cloud amount and the mean for

July given in Gorshkov [1983], where the cloud amount increases to 0.9 toward the pole.

Near Novaya Zemlya and also across the Canadian Archipelago cloud amounts of 0.7-0.8 in

the July mean are typical. For the winter period, no visible data are available, so that

accuracy assessment through a comparison with manual interpretations is more difficult.

However, an examination of surface temperatures did not appear contaminated, so that cloud

fraction computed by the threshold step should be reliable.

9. DISCUSSION

The initial classification step is the most difficult part of the algorithm to refine due

to its sensitivity to changes in thresholds. Error will propagate from this point, so it is

important that all pixels labeled clear in this step actually are clear, but it is also important

to obtain as many clear pixels as possible. The spatial test is inappropriate for winter data

in polar regions where strong surface temperature inversions are the norm, and is of

questionable utility even in the summer when isothermal and inversion conditions are also

common. The inclusion of AVHRR channel 3 aids in the discrimination of ice/snow ,and

cloud, and the channel 3-4 difference detects optically thin cloud and fog.

Snow and ice information provided by the SMMR and SMMR-defived data sets was

another important addition to the basic algorithm. No other use of SMMR data in

conjunction with AVHRR data for polar cloud and surface analysis has been reported in the

literature. The merged data sets capitalize on the unique capabilities of AVHRR and

passive microwave data by reducing the inherent limitations of each sensor, and provide a

means to improve automated cloud mapping in polar regions. Similar analyses will become

possible with the suite of remote sensing data due to be collected from the Earth Observing

System (EOS) in the 1990s. Unfortunately, extracting, calibrating, and registering three or
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more AVHRR channelsfor sevendays, two SMMR channels for each of three days,

calculating sea ice concentration for three days, and developing a land/ice cap mask is not a

trivial undertaking, so that this procedure is cost-effective only in areas where the more

basic methods fail; e.g., over snow and ice.

The cloud detection algorithm presented here used as its starting point ideas that

were presented in Rossow et al. [1985] as design criteria for an emerging ISCCP algorithm.

From that point, this algorithm and that of the ISCCP developed for the most part

independently. The ISCCP algorithm is currently being applied operationally on a global

scale, and data for selected time periods are available for distribution. It is of interest to

point out a few similarities and differences between the two algorithms. The basic steps of

space/time tests, clear sky radiance composites, and bispectral thresholds have been retained

in current ISCCP algorithms, although some threshold and test values have changed. These

are also used here, with these exceptions: the spatial tests are eliminated (Section 6.2), the

temporal tests are skipped if the pixel is first determined to be thin cloud, and winter

thresholds and surface/cloud temperature relationships are treated separately. The importance

of surface identification has resulted in the use of SMMR data here (25 km resolution), and

the use of NOAA snow cover, USA Navy/NOAA sea ice data sets (1° iat-long grid) and

land topography data in the ISCCP procedure. Statistical tests for the determination of

cloud contamination here are based on probabilities of sample statistics coming from a

population defined by previous analyses. In the ISCCP algorithm, average and extremum

from radiance distributions are compared over short-term and long-term time periods. The

difference between these methods is difficult to access because the initial classifications

would produce different radiance distributions. There are other differences between the two

algorithms; Rossow et al. [1988] provides greater detail on the ISCCP algorithm. However,

the use of correlative data for surface identification and the use of temporal tests have been

deemed crucial to both, and should be considered important components of a cloud
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10.CONCLUSIONS

A clouddetectionalgorithmfor usewith Arctic AVHRRand SMMRdatahasbeen

presented.Someof thedesignobjectivesfor the InternationalSatelliteCloudClimatology

Project(ISCCP)clouddetectionproceduresuchas spaceandtimecontrastscomprisebasic

thermal-onlyand visible/thermalalgorithmversions,which are then modified for polar

applications. All versionsof the algorithmperformbestover snow-freeland and open

water,so thatimprovementin computedcloudfractionusingthemodifiedalgorithmwill be

greateroversnow,ice cap,andseaice and lessoveropenwaterand snow-freeland. In

tes!cases,cloudfractioncomputedwith themodifiedalgorithmwasfoundto be at least5%

moreaccuratewhencomparedto manualinterpretations.

For the datasetsemployed,thebestmethodof clouddetectionwith Arctic AVHRR

data includes first an accurate identification of surface types and changes. This allows

thresholds to be set appropriately, and here is accomplished with SMMR passive microwave

data. Next the temporal variability of pixel radiances is examined, using channels 1, 4, and

the reflected component of channel 3 during summer and the difference between channels 3

and 4 in conjunction with channels 4 or 5 for winter ,analyses. Differences between thermal

channels aid in the detection of thin cloud. Compositing over a 5-day period provides the

clear sky information for the final multispectral thresholding of the daily data. The lack of

'ground truth' makes testing and validation difficult, a problem which can be alleviated to

some extent with the use of synthetic data sets.
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Figure 1. The three study areas within the Arctic, one centered on the Kara and Barents

Sea and the other two covering much of the Canadian Archipelago and northern

Greenland.

Figure 2. AVHRR channel 1 (visible) images showing a portion of each summer study

area (July 3, 1984; top and middle) and an AVHRR channel 4 (thermal) image of

the winter study area (January 8, 1984; bottom). In study area 1 (top), Novaya

Zemlya is top center though largely obscurred by cloud, Spitsbergen is lower left,

,and the North Pole is just off the lower left of the image. Sea ice occupies the left

third of the image. Study area 2 (middle) is centered on Baffin Bay. Sea ice can

be seen extending southward to the coast of Greenland. Study area 3 (bottom) is

centered on northern Greenland. In this thermal image, lower temperatures are

represented by darker grey shades, for ex,'unple, low surface temperatures over

central Greenland ,and portions of the Canadian Archipelago. See also Figure 1.

Figure 3. Flow chart of a) the basic cloud detection algorithm and b) the algorithm

modified for use in polar regions. Input are shown on the left; additional details are

given on the right.

Figure 4. Five-day clear sky composite values from the modified algorithrn for a sample of

pixel locations plotted against AVHRR measured values for the same locations under

cloudy conditions. Channels 1 (top), 3 (middle), and 4 (bottom) are shown. The

line in each plot represents equal clear sky composite and measured values.

Figure 5. Surface albedos (AVHRR channel 1) in study areas 1 and 2 for the compositing

period July 2-6, 1984, in tenths.

Figure 6. Sea ice albedoes for the period July 3-5, 1984, in tenths. After Scharfen et al.

(1987).
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Figure 7. Surface temperatures (AVHRR channel 4) for the compositing periods, July 2-6,

1984 (top and middle) and January 7-11, 1984 (bottom), degrees Kelvin, for all

three study areas.

Figure 8. Surface temperatures in Kelvins from the European Centre for Medium Range

Forecasting (ECMWF); July 4, 1984 and January 9, 1984.

Figure 9. Cloud fraction for each study area on July 3, 1984 and January 8, 1984, in

tenths.



Table 1

Truth table for the initial classification of a pixel based

on the results of the spatial and temporal variation tests.

Spatial

Variation

Cloud

Undecided

Temporal Variation

Cloud Undecided Clear

Cloud Cloud Mixed

Cloud Undecided Clear
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Table 2

Temporal thresholds by surface type. A pixel is compared to tile same location oll tile day before

and the day after. Channel 1 values ,are percent albedo; channels 3 and 4 are Kelvins.

LAND OCEAN ICE SNOW

CLOUD if greater

Channel 4 8.0 3.5 5.0 7.0

CLEAR if within

Channel 1 4.4 1.4 8.8 3.8

Channel 3 4.0 3.5 3.5 3.5

Channel 4 2.5 i.i 2.0 2.0



Table 3

Final Thresholds for lhe three AVHRR channels.

chamlels 3 and 4 are Kelvins.

Channel l values are percent albedo;

35

Channel LAND OCEAN

1 6.0 3.5

3 6.0 6.0

4 8.0 3.0

ICE SNOW

6.0 4.0

5.0 5.0

4.0 4.0



Table 4

Percentages of cloud and surface types within tile eight test regions.

Cloud data are given for tile middle five days of the seven day analysis

period. Cloud categories are low, middle, and high. Surface type

proportions are given for the first day of the period.
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Region:

day

Synthetic Data

Low, Middle, High (%)

AVHRR Data

Low, Middle, High(%)

i: 2 4, 28, 39 0, 0, 3

3 24, 43, 6 72, 18, 0

4 47, 41, ii 14, 0, 7

5 6, 0, 81 10, 20, 16

6 58, 8, 33 52, I0, 33

Surface:

2: 2

3

4

5

6

Surface:

Water: I00 Ice: I00

29, 0, 58 12, 12, 75

21, 42, 17 13, 30, 53

30, 12, ]6 27, 41, 30

0, 17, 78 18, 43, 38

55, 7, 37 18, 80, 0

Land: 35, Water: 65 Water: I00

3: 2

3

4

5

6

Surface:

4: 2

3

4

5

6

Surface:

0, 33, 0 i0, 17, 53

24, 20, 24 17, 33, I0

59, 20, 21 i0, 45, 25

0, 0,I00 0, 20, 3

20, 25, 16 15, 40, 20

Water: 24, Snow: 76 Land: 80, Water: 12,

Ice: 8

0, 52, 0 5, I0, 82

31, 14, 54 35, 30, 30

12, 0, 28 71, I0, 0

i0, 20, 51 28, 25, 7

48, 18, 17 17, 50, 23

Land: 22, Water: 12,

Ice: 66

Water: 45, Snow: 27,

Ice: 22, Land: 6



Table 5

"Actual" cloud fraction for synthetic data and cloud fraction

computed by the three versions of the cloud detection algorithm.

Values are for each of the middle five days of an analysis period.

The number of clear pixels in the compositing step is also shown.
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Region: Algorithm Version

day Actual Basic-VT Basic-T Modified

i: 2 71 76 76 78

3 73 80 80 75

4 99 I00 98 i00

5 87 90 90 90

6 99 i00 98 i00

# clear: -- 643 643 125

2: 2 87 93 92 94

3 80 97 97 82

4 58 83 80 77

5 95 i00 i00 95

6 99 i00 98 i00

# clear: 219 219 71

3: 2

3

4

5

6

# clear:

33 82 78 83

68 94 91 94

i00 I00 94 I00

i00 I00 i00 I00

61 96 90 97

415 415 425

4: 2 52 90 76 58

3 99 99 98 99

4 40 79 66 54

5 81 98 95 81

6 83 96 88 92

# clear: -- 420 420 32



Table 6

Cloud fraction for actual (AVHRR) data as computed by manual

interpretation and three versions of the ISCCP algorithm.

Region:

day

I:

Manual

Algorithm Version

Basic-VT Basic-T Modified

2 3 56 2 1

3 90 99 78 79

4 21 70 12 i0

5 46 90 65 55

6 95 99 89 85

clear: 2404 2404 2264
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2:

3:

2 99 99 99 I00

3 96 97 81 98

4 98 94 75 96

5 99 i00 99 I00

6 98 92 73 98

clear: -- 159 159 9

2 80 83 75 85

3 60 62 55 61

4 80 83 73 80

5 23 31 18 29

6 75 77 72 77

clear: 1509 1509 972

4: 2 97 I00 99 i00

3 97 99 63 98

4 81 95 46 85

5 60 76 51 75

6 90 95 80 92

# clear: -- 1031 1031 362



Table 7

Root mean square error in cloud fraction computed by

each algoritlun version for the manually interpreted amount in the
AVHRR data ,and the "actual" amount in the synthetic data (Tables 5

and 6). Mean absolute difference is also given (in parentheses).

Algorithm Version

Data Set Basic-VT Basic-T Modified

39

AVHRR 19.8 15.3 6.2

(11.5) (11.3) (4.4)

Synthetic 21.0 17.0 16.3

(14.4) (12.0) (9.2)
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J. Key and R.G. Barry

Cooperative Institute for Research in Environmental Sciences

University of Colorado, Boulder
Boulder CO 80309-0449 USA

ABSTRACT

Cloud cover and surface temperatures in the polar

regions are important indicators of global climate change,
however, automated analyses of satellite radiance data have

concentrated on low and middle latitude situations. The

International Satellite Cloud Climatology Project (ISCCP) cloud

detection algorithm is applied to Arctic data, and modifications

are suggested. Both Advanced Very High Resolution

Radiometer (AVHRR) and Scanning Muhichannel Microwave

Radiomeler (SMMR) data are examined. Synthetic AVHRR

and SMMR data are also generated. Modifications suggested

include the use of snow and ice data sets for the esthnation of

surface paraaneters, additional AVHRR channels, and surface
class characteristic values when clear sky values cannot be

obtained. Greates.* improvement in computed cloud fraction is

realized over snow and ice surfaces: over other surfaces all

versions perform similarly. Since the inclusion of SMMR for

surface analysis increases the computational burden, its use

may be justified only over snow and ice-covered regions.

Keywords: ISCCP, AVHRR, Arctic clouds.

INTRODUC_ON

The important role that polar processes play in the

d),nanaics of global climate is widely recognized (Polar

Research Group, 1984). The variation of cloud amounts over

polar ice sheets, sea ice, and ocean surfaces can have

in_portant effects on planetary albedo gradients and on surface

energy exchanges (Barry etal., 1984). Cloud cover exerts a

major influence over the anlount of solar and iongwave

radiation reaching the surface, and is linked to the sea ice

through a series of radiative, dynamical, thermodynamic and

hydrological feedback processes (Sahzman and Moritz, 1980).
Extent and thickness of sea ice influences oceanic heat loss

and surface albedo which thereby influences global climate via

the ice-albedo feedback (Budyko, 1969).

Current procedures for automated analyses of satellite

radiance data have been developed for low and middle latitudes

but their application to polar regions has been largely

unexplored. These methods are reviewed in Key (1988),

Rossow (1989), and Key et al. (1989). Those that have been

applied to polar data often fail in the polar regions because
snow-covered surfaces are often as reflective as the clouds and

the themlal structure of the troposphere is characterized by

frequent isothermal and inversion layers. Additionally, the

polar darkness during winter makes that data collected in the

visible portion of the spectrum largely unusable. A complex

analysis method that can recognize and cope with these

situations is therefore necessary (WMO, 1987).

The purpose of this study is to implemenl, test, and

modify the basic International Satellite Cloud Climatology

Project (1SCCP) algorithm for use with polar data. The

International Satellite Cloud Climatology Project (ISCCP) to

map clouds with satellite data began in July 1983. Its goal is

to provide a uniform global climatology of satellite-measured
radiances and from these to derive an experimental climatology

of cloud radiative properties. As a basis for developing the

ISCCP algorithm, Rossow et al. (1985) compared six clo,d

algorithms. The current state of the project is such that there

is no single version of the algorithm which can be applied to

all areas of the globe. The algorithm is currently operational

glob',dly, but perfomis rather poorly at high latitudes (Rossow,

1987), where it was found that the method in general detected

too much cloudiness, in part because it does not distinguish

between open water/sea ice and snow-covered/snow-free land,
and because thresholds were not "tuned" for the small

temperature differences and generally low IR radiances

conunon in the polar regions.

DATA

The Advanced Very High Resolution Radiometer

(AVHRR) on board the NOAA-7 polar orbiting satellite

measures radiance in five channels encompassing the visible.

infrared, and thermal portions of the electromagnetic spectrum

(1: 0.58-0.68Bm, 2: 0.73-1.01am, 3: 3.55-3.93gtm, 4: 10.3-

11.31am, 5: 11.5-12.51am) with a nadir resolution of 1.1 kin.

Global Area Coverage (GAC) imagery is a reduced-resolution

product created through on-board satellite processing, with each

pixel representing a 3 x 5 km field of view. Channels 1 and
2 were converted to approximate spectral albedo and corrected

for solar zenith angle; channels 3, 4, and 5 were convened to

brightness temperature (NOAA, 1984). The typically low

water vapor content in the polar atmosphere and the low

physical temperatures reduce most atmospheric effects to a

point where they may be neglected for these analyses.

The Nimbus-7 Scanning Multichannel Microwave

Radiometer (SMMR) senses emitted microwave radiation in
five channels: 6.6. 10.7, 18.0, 21.0, and 37.0 GHz, with two

polarizations (horizontal and vertic',:d) per channel. At these

frequencies, passive microwave data is relatively unaffected by

clouds and provides useful data year-round independent of
solar illumination. The 18 and 37 GHz vertical polarization

chasmels are employed here for surface parameterization, with



fieldsofviewof 55x41kmand27x18kin, respectively.

In order to study both clouds and surfaces beneath

clouds, it is worthv,,hile to conrbine the AVHRR and SMMR

data into a single inlage set. These are merged in digital form

and mapped to a polar stereographic projection. This

projection yields equal-area pixels true at 70" latitude with a

five kilometer pixel size. SMMR data were convened to the

five kilometer cells by duplication of pixels. Further details

are given in Maslanik el al. (1988).
Three area_s of the Arctic are examined (Figure I); a

seven-day summer series (July 1-7, 1984) of areas i and 2,

and a winter series (January 6-12, 1984) of area 3. These data

are part of an ISCCP test data set and include representative

samples of all surface types found in the Arctic: snow-covered
and snow-free land, sea ice of varying concentrations, open

water, and permanent ice cap.

Figure. 1. The three study areas within the Arctic, one
centered on the Kara and Barents Sea and the other two

covering much of the Canadian Archipelago and northern
Greenl.',,_d.

Ancillary, data inch)de surface temperatures from the

European Centre for Medium Range Forecasting (ECMWF) and

sea ice albedo derived from a combination of DMSP imagery

and the NOAA/Navy ice charts.

Spectral features examined are AVHRR channels 1, 2,

and 3 albedos, cha_,mels 3, 4, and 5 brightness temperatures,
and the differences between channels 3 and 4 mad 4 and 5.

Four surface and three cloud classes are analyzed. Surface

types are snow-free land, snow-covered land, open water, and

medium to high concentration sea ice. Cloud classes are low,

middle, and high ax defined by brighmess temperature in

AVHRR channel 4, assumed to represent temperatures at the

top of optically thick cloud layers.

In order to test the sensitivity of tire various cloud

algorithms, a control data set with known characteristics was

needed. A synthetic data set was developed which consists of

seven days of AVHRR and SMMR data, SMMR-derived sea

ice concentrations, and a land mask. The surface and cloud

type rnaps for each day of file seven day period are first

generated, where the nlinirnum and ma_,dmum allowable sizes

of surface and cloud "objects" are ,W_ecified Object

dimensions are r,'mdomly chosen within the restricted range,

and the class of the object is rmldomly assigned. Regions are

then filled with nonnMly-distributed data for each AVHRR and

SMMR channel and for sea ice concentration using

empirically-derived statistics.

TttE ISCCP ALGORITtIM

The ISCCP cloud algorithm has three major

components: cloud detection, radiative analysis, and statistical

analysis (Rossow et at., 1985). Of concern here is the cloud

detection step. The algoritlun assumptions are that cloud scene
radiances are more variable in time and space than clear scene

radiances and cloudy scenes are associated with larger visible
channel and smaller infrared radiances than clear scenes. The

major steps of the basic algorithna are summarized in Figure 2a
and include a spatial variation test for the warmest pixel in a

subregion (assumed clear), a temporal variation test, five-day

clear sky compositing (requiring seven days of data), and a

final bispectral threshold test of each pixel on each day based

on clear sky composite values. Although this algorithm is

undergoing constant change, the basic steps described here
remain valid.

The algorithm has been adjusted here in order to deal

with the problems cited earlier. Major modifications suggested
include the use of snow and ice data sets for the estimation of

surface parameters, elimination of the spatial test for the

wannest pixel, tile use of AVHRR channels 1 (0.Tl.tm), 3

(3.7Jam), and 4 (Ill.tin) in the temporal tests, statistical tests for

compositing, and the final muhispectral thresholding, and the
use of surface class characteristic values when clear sky values

cannot be obtained. Additionally, the difference between

channels 3 and 4 is included in temporal tests for the detection

of optically thin low cloud and cirrus. The major steps of the

modified algorithm are shown in Figure 2b.

TESTING AND ALGORITHM COMPARISON

Three versions of the ISCCP algorithm are compared.

The original algorittun developed for low latitude sluruner

conditions recognizes only two surface types: land and water.
No SMMR or sea ice concentration data are employed.

Spatial/temporal tests in the initial classification step are

thermal only (AVHRR channel 4), and a bispectral threshold

test (channels 1 and 4) is used as the final classification. This

version with a thermal-only threshold test was also used to

sinmlate winter applications. The algoritlml with modifications

described in the previous section is the third version tested.

Four regions from the AVHRR imagery and four regions from

the synthetic data sets are used as test data. Each region is

50x50 pixels or (250kin) 2 and differs in surface and cloud

types and proportions. Surface proportions changed in both

data sets over the analysis period by up to 20%. These

changes are due to sea ice movement and melting.

All versions of the algorittml perform best over land

and open water. Snow and ice remain the problem areas

although the modified versions performed best under these

conditions. When cloud amounts are high (more than 80%).

all versions compute cloud fraction to within approximately

5%. When cloud amounts are low, the modified version is

more accurate, although cloud fraction often appeared to be too

high. In the actual data, this is at least in part due to errors i_a

the manual interpretation. In the synthetic data, this is

probably due to the fact that clear sky areas are f'dled with

values in the range of the mean plus or minus three standard

deviations (ffdlo',*,,ing a Gaussian probability function), so that

extreme values may be beyond threshold cutoffs and wilt

consequently be labeled as cloud.



a) _sccP CLOUD DE_ECT_ON (BASIC)

VISIBLE AND THERMAL

DATA

5 DAYS

7 DAYS _ ESTS E

(250 km) z S

LAND/WATER ONLY

I

THERMAL IMEANS & EXTREMES iVISIBLE AND

DATA _ IOF 'CLEAR' PIXELS

7 DAYS 5 DAYS

I X 3 CELLS

I

CLEAR SKY

COMPOSITE

§-DAY PERIOD

I

BISPECTRAL

THRESHOLD

VISIBLE/THERMAL

INITIAL CLASSIE.;

CLOUD/CLEAR/UNDECIDED;

THRESHOLDS FOR

LAND AND WATER

STATISTICAL TESTS

OF 'CLEAR' PIXELS

FINAL CLASSIF. OF

EACH PIXEL AND

EACH DAY;

CLOUD/CLEAR

_SCCPC_I/OUD_ECTION tMODIF_

SW.MR iS, 37 GHZ SURFACE

LAND MASK _ IDENTIFICATION

SEA ICE CONCENTRATION

3-4 DAYS LAND/WATER�

(250 km) _ SNOW/ICE

• ___ i-

f

AVHRR CS_ 1,3,4,3-4 I TEMPORAL

_ TESTS7 DAYS

_250 km_ _ 3 DAYS

LANDfWATERi

SNOHiICD

J

AVRRR CH. i, 3, 4 iME_NS & EXTREMES

'CLEAR' BIKELS !

7 DAYS _ OF 5 DAYS

3 X 3 CELLS

I

CLASS CHARACTERISTIC

VALUES _ CLEAH SKY

CONPOSITE

5_DAY FESIOD

I

HDLTISFECTRAL

THRSSEOLDAVHRR CH. 1, 3, 4

5 DAYS

INITIAL CLASSIF.;

CLOUD�CLEAR/UNDECIDED;

THRESHOLDS FOR EACH

SURFACE

I STATISTICAL TESTS

OF 'CLEAR' PIXELS

FINAL CLASSIF. OF

EACH PIXEL AND

EACH DAYI

CLOUD/CLEAR

Figure. 2. Flow cha."t of (a) the basic ISCCP cloud detection algorithm and (b) the algorithm modified for use

with Arctic data. Input are shown on the left; additional details are given on the righ',.

The basic versions of the algorithm often overestimate

cloud amount by up to 20%. This is common over ice where,

in the bispectral threshold test, the threshold for water is used.
This albedo threshold is too small to account for variation in

sea ice albedos, and consequently many clear pixels were

mistaken as cloud. Similar observations were made by Rossow

(1987). A related situation is that the basic version often
makes an accurate assessment of cloud fraction, but for the

wrong reason. For example, one sea ice region was covered

by a very thin cloud layer. Channels I mad 4 alone did not

detect this condition, yet the cloud amount determined by the

original algorithm version is similar to the manually-interpreted

amount. It appears that the algorittun is labeling cloud what it
sees in channel 1 as sea ice. The snow and ice data sets used

in the modified versions solve these problems by providing

appropriate thresholds.
Root mean square (RAMS) errors illustrate that the

modified version was most accurate in computing cloud

fraction for both data sets. The thennal-ordy version

performed reasonably well with the synthetic data set, at least

in part for reasons explained above.

APPLICATION

The modified version of the algoritban is next applied to

the Arctic study areas. Surface albedos determined over the

five-day compositing period for the two summer sludy areas,

which overlap the winter area, are shown in Figure 3. Values

are averages over each quarter region. Sea ice albedo derived

from DMSP imagery and NOAA/NAVY ice charts is in

general agreement for sea ice. Composited surface

temperatures are shown in Figure 4 for AVHRR channel 4.
Since surface emissivities in channel 4 (11 m) are near unity,

the temperatures presented are considered to be close estimates

of physical temperatures. These are in close agreement with
the ECMWF data.

Cloud fraction for the middle five days of the period

",,,'as also computed with the modified ISCCP algorithm (not
showni, and is similar to the mean cloud iui]outlt for each

nlOllllh C[_3tld iLlllOtllll lellds to be lowest over norlhern

Greenland and the Canadian Archipelago, and highest over the

Greenland Sea

Np

I

SURFACE ALBEDO (AVHRRCHANNEL I}

_ ._'_ JULY2-6

JULY 2-6 NP

CD_

Fig_re 3 Surface albedos (AVHRR channel I) in s_udy areas
1 aa_<.l 2 foi the c(_mpositmg period July 2-6, 1984, m tenths.
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Figure. 4. Surface temperatures (AVHRR channel 4) for the

compositing periods, July 2-6, 1984 (top and middle) zqd

Janua.ry 7-11, 1984 (bottom), Kelvins. for all three study areas.

CONCLUSIONS

The cloud detection step of the International Satellite

Cloud Climatology Project algorithm has been adapted for use
with Arctic AVHRR and SMMR data. Based on test data for

summer conditions in the Arctic, the modified algoritban is

expected to yield an average improvement of 5-10% in

computed cloud amount over the original version, depending on

surface type and cloud proportions. All versions of the

algorithm perfonn best over snow-free land and open water, so

that improvement will be greater than this figure over snow,

ice cap, and sea ice, but less over open water arid snow-free

land Synthetic data sets have proven useful in testing and
validation.

"lt,_e best method of cloud detection with Arctic

AVtlRR data includes first an accur_ue identification of surface

types mul claa.nges. This ,'dlo,.v_, thresholds to be set

appropriately. Passive microwave dala is useful in this step

Next the temporal variability of pixel radiances must be

examined, using AVHRR channels 1, 4, and the reflected

component of channel 3 during sulrm_er and the difference

between channels 3 and 4 in conjunction with channels 4 or 5

for winter anMyses. Temporal changes ale liIOSt i,np,.Jrtant in

winter when surfaces may be colder than cloud layers and

spectral information alone is inadequate. Compositing o;,ei a

5-day period, using 30-day values where necessaD', provides

the clear sky infommtion for the muhisf_eciral thresholding of

the daily data. This method provides a basis for future cloud

detection algorithms for the polar regions.
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Abstract

The variation in cloud amount over polar ice sheets, sea ice, and ocean surfaces can

have important effects on planetary albedo gradients and on surface energy exchanges, so

that monitoring of polar cloud cover is crucial to studies of climate change. The spectral

and textural characteristics of polar clouds and surfaces for a seven-day summer series of

Advanced Very High Resolution Radiometer (AVHRR) data in two Arctic locations are

examined, and the results used in the development of a cloud classification procedure for

polar satellite data. Since spatial coherence and texture sensitivity tests indicate that a joint

spectral-textural analysis based on the same cell size is inappropriate, cloud detection with

AVHRR data and surface identification with passive microwave data are first done on the

pixe! level as detailed in Part I [Key and Barry, 1989]. Next, cloud patterns within (250

km) 2 regions are described, lhen the spectral and local textural characteristics of cloud

patterns in the image are determined and each cloud pixel is classified by statistical

methods. Results indicate that both spectral and textural features can be utilized in the

classification of cloudy pixels, although spectral features are most useful for the

discrimination between cloud classes. This methodology provides a basis for funtre

"objective" automated mapping of cloud types and amount over snow and ice covered

surfaces.

1. INTRODUCTION

High latitude response to changes in cloud cover is a key area of uncertainty in

evaluating changes in the global climate system. To better understand climatic forcing,

statistical frameworks for describing the morphology of cloud fields as well as the radiative,

dynamical, and microphysical processes determining this morphology are needed [CGC,

1988, pg. 117]. Major uncertainties exist in current cloud climatologies for polar regions as

a result of the problem of discriminating clouds over snow and ice using satellite visible or
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infrareddata.

This issuehasbeenaddressedin Part I of this research[Key and Barry, 1989],

wherean algorithmwaspresentedthatperformspixel-scale,analysis of surface and cloud

radiances utilizing visible, thermal, and passive microwave data over a seven-day period.

The purpose of this paper is to examine the spectral and textural characteristics of

summertime polar clouds and surfaces in Advanced Very High Resolution Radiometer

(AVHRR) data; the issue of the appropriate scale of measurement for texture measures will

be addressed and an optimal set of features is determined. This information is then used in

the development of a procedure that classifies cloudy pixels - identified as such by the

algorithm described in Part I - into recognizable cloud patterns. The methodology employed

differs from other studies in that only the cloudy pixels are classified, in contrast to the

method of gridding an image and classifying the grid cells, which themselves may contain

mixtures of surface and cloud types. As detailed in a later section, some of the problems

that have been recognized with traditional spectral/textural classifiers have been alleviated,

but others have been created.

Cloud detection methods for use with satellite data that examine only spectral

characteristics of pixels include single- and multi-channel threshold methods, radiative

transfer models, histogram techniques, and statistical clustering procedures. These are

reviewed in Part I [Key and B:ury, 1989]. Some studies have included an analysis of

texture in cloud classification schemes, generally in a clustering framework [e.g., Welch et

al., 1988, 1989a,b; Garand, 1988; Ebert, 1987, 1988; Parikh, 1977]. Contextual analyses of

frontal patterns and cloud shadows are given in Gurney and Townshend [1983], Wang et al

[1983], Swain et al. [1981], and the spatial classifier of Kettig and Landgrebe [1976].

Global cloud climatologies are reviewed by Hughes [1984]. Vowinckel [1962],

Huschke [1969], and Gorshkov [19831 provide perhaps the most comprehensive cloud

climatologies for the Arctic, but are derived primarily from surface observations. They
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show general agreement in the seasonal cycle of tolal cloud amount, but differ in the

geographical distribution of cloud cover, particularly in the case of low cloud in winter.

Spring and summer cloud amounts and patterns in the Arctic have been recently examined

by Kukla [1984], Robinson et al. [1986], Barry et al. [11987], and McGuffie et al. [1988].

McGuffie et al. [1988] compared three cloud analysis methods (two manual and one

automated) based on Defense Meteorological Satellite Program (DMSP) images. While

cloud detection schemes exist for many data types and geographic locations, the inherently

subjective nature of defining cloud types and the algorithmic difficulty of incorporating

texture into the analyses are two inhibitory factors in the development of the automated

cloud typing methods needed for large scale cloud climatologies.

2. DATA SET

All five AVHRR channels (1: 0.58-0.681am, 2: 0.73-1.0_tm, 3: 3.55-3.931am, 4: 10.3-

ll.31.tm, 5: ll.5-12.5btm) are initially employed. Data from the Nimbus-7 Scanning

Multichannel Microwave Radiometer (SMMR) in channels 18 and 37 GHz vertical

polarization, as well as SMMR-derived sea ice concentration, are used for surface

parameterization in the cloud detection step described in Part I [Key and Barry, 1989], but

are not used directly in the analysis of cloud patterns. SMMR, SMMR-derived sea ice

concentration, and AVHRR data were co-registered to a polar stereographie projection and

used simultaneously. The effective pixel size of the AVHRR data is reduced to 5x5 km

[Maslanik et al., 1989].

Two areas of the Arctic are examined (Figure 1). One area is centered on the Kara

and Barents Sea extending north to the pole and south to Norway and the Siberian coast.

The second area covers most of the Canadi_m Archipelago and Greenland, also extending to

the pole. A seven-day summer series (July l-7, 1984) of these two areas is used in tile

analysis of cloud patterns. These areas include representative samples of all surface types
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found in the Arctic: snow-covered and snow-free land, sea ice of varying concentrations,

open water, and permanent ice cap. The observed conditions are usual for summer in tile

Arctic, as are the pressure patterns which occurred. Synoptic pressure patterns observed in

Arctic Ocean buoy data [Colony and Munoz, 1986] during the study period are similar to

the mean pattern for the month [Serreze and Barry, 1988; Gorshkov, 1983]. Although

correlations have been observed between synoptic pressure systems, cloud amount, and

cloud type [Barry et al., 1987], detailed cloud climatologies for the Arctic are not available

and it is therefore more difficult to make such a statement concerning cloud cover.

Area 1 on July 1 exhibits the greatest mixture of cloud patterns and clear sky

conditions of all the imagery, and will be used to illustrate the methodology and

classification results throughout the remainder of the paper. However, spectral and textural

characteristics as well as cloud pattern training areas were extracted from the complete set

of imagery, and results are expected to be similar for other days. Figure 2 shows the study

area in AVHRR chamlel 1 (visible). Novaya Zemlya is at upper center with sea ice above

and to the left. Sea ice also occupies the lower left portion of the image. Grid lines

delineate 50x50 pixel or (250 km) 2 regions. Figure 3 is an image of the cloud-only portion

of Figure 2, shown in AVHRR channel 1 (visible) with grid lines delineating cells of 16x16

pixels (Section 3.3). This image was classified using the algorithm described in Part I [Key

and Barry, 1989], and briefly described in Section 4 below. Low thin cloud over sea ice in

the Kara Sea, which is not apparent in Figure 2, is identified with AVHRR channel 3 and

the temporal tests of the algorithm. Figure 4 is an image of SMMR-derived surface types

showing land, sea ice, ice cap, open water, and a narrow coastal zone. Inaccuracies in the

identification of cloudy pixels result from incorrect surface identification due to weather

effects in the passive microwave, resolution differences between tile SMMR and the

AVHRR, and coastal effects.



3. FEATURES

3.1 Spectral Features

Five surface and three broad cloud classes ,are analyzed for their spectral

characteristics. Surface types are snow-free land, snow-covered land, open water, medium

to high concentration sea ice, and low concentration sea ice. Cloud classes are defined by

channel 4 brightness temperature (T) assumed to represent temperatures at the top of

optically thick cloud layers, and encompass the categories: low T>265 K, middle

245_-'T<265 K, and high T<245 K. Spectral and textural features were calculated only for

"pure" classes, i.e., groups of contiguous pixels, or cells, that contain one and only one the

class as determined through a manual interpretation. Training areas were defined manually.

Spectral features examined for each pixel are channels 1, 2, and 3 reflectance,

channels 3, 4, and 5 brightness temperatures, ratios of ch,'umels 2 and 1, 3 (reflectance) and

1, and channel 4 minus 5 (brightness temperature difference). The ratio of channel 2 to

channel 1 in AVHRR data or the difference between channels 2 and 1 enhances vegetation

signals, arctic haze, and snow and sea ice underneath clouds. Channel 3 is important for

the discrimination of low cloud over snow and ice surfaces. The difference between

channels 3 and 4 aids in the detection of optically thin cloud and fog, while the difference

between channels 4 and 5 is useful for identifying cirrus [Olesen and Grassl, 1985;

Saunders, 1986]. For each cell, the mean and standard deviation are examined. These are

first order statistics that describe the distribution of pixel values within a cell.

3.2 Textural Features

Second order statistics summarize the probability of the intensity values of a pair of

pixels. These relative frequencies are computed for each pair of pixels in a given positional

relationship and are summarized in a grey level co-occurrence matrix (GLCM). Positional

relationships refer to separation distance, d, and direction, 0. Haralick et al. [1973] first
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used co-occurrence matrices to classify terrains in aerial photographs with a very small

matrix. Welch el al. [1988] and Kuo et al. [1988] computed a number of measures from

the GLCM for cloud analysis. Higher order textural statistics may also be calculated,

although they generally involve more computation and do not necessarily yield better

results. Julesz [1975] has argued that two textures with identical second-order statistics are

not discriminable. It is possible, therefore, that first and second-order statistics are all that

are needed to discriminate texture.

Weszka et al. [1976] modified this method to operate on grey level difference

(GLD) histograms rather than grey level pairs. The data are first quantized to 64 grey

levels, and the grey level difterence, g, is computed for each pair of pixels in the cell over

each of four ,angles: up-down (0°), left-right (90°), upper left-lower right (135°), upper right-

lower left (45°). Texture may contain a directional component so that the histogram must

be specified as a ftmction of angle as well as distance. A histogram of gray level

differences is then constructed for each distance and angle, and used to compute various

texture measures. The histograms will be spread over a larger range of g as graininess or

streakiness increase. The grey level difference texture measures calculated from the

histograms are the mean, contrast, angular second moment, and entropy for the cell. The

mean, maximum, and range of these quantities over the four angles are used in subsequent

analyses. Both GLD and GLCM texture measures were initially computed for the AVHRR

data sets. However, due to the similarity of these measures, only the GLD measures were

retained because they are computationally simpler.

The variability of grey level differences is summarized by the contrast. Large

values correspond to structured clouds such as cumulus with shadows. The angular second

moment measures the homogeneity of gray level differences with distance and direction.

Angular second moment will be high for decks of stratus and for bands of clouds oriented

in the direction of 0. Entropy describes the degree to which distinct scales of organization
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areunrecognizable.It is maximumwhenall radiancedifferenceshavean equalprobability

of occurring(i.e. the histogramis uniform) and low when lexiure is smooth. See tile

appendix for more detail and definitions of the texture measures.

ff texture is coarse and d is small compared to the texture element size, the pairs of

points at separation d will usually have similar gray levels and the histogram will have high

frequencies around g=0. Conversely, with fine texture and d comparable to element size,

the gray level differences will often be large with a large spread in the frequencies of g. If

texture is directional and d is in the proper range, the degree of spread in the histogram

should vary with direction. Separation distances of 1, 2, 4, and 8 have been examined

elsewhere [e.g., Weska et al., 1976 and Parikh, 1977] with distances of 1 or 2 being the

preferred. Welch et al. [1988] found that optimal separation distance depends on cloud

type. However, the effect of pixel resolution on textural features is tmc!ear. Since a small

cell size is used here (discussed below), and because separation distances of 1 and 2

function similarly in this data set, d=! is used.

Other texture measures are also examined. The area averaged Roberts gradient is

maximum in regions of sharp brightness contrast and is therefore a measure of edge

strength [e.g., Gonzalez and Wimz, 1977]. It is defined over any separation distance but

does not have directional sensitivity. Hobson [1972] and Harris and Barrett [1978] utilize a

measure called vector strength, ff the pixels within a cell are connected into a set of

adjacent triangular planes, then texture can be measured through the dispersion in three-

dimensional space of normal vectors to these planes. Vector strength is a summary of the

distribution of normal vectors ,and is high for smooth surfaces and low for rough surfaces.

A two dimensional Fourier transform [e.g., Bunting and Fournier, 1980]

applied to each cell as a means of defining the texture of cyclical cloud patterns.

measures are used: the streakiness factor, cell intensity, and the maximum ring

wavelength.

is also

Three

density

The streakiness factor is a directional measure which takes on values between
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0 and 1, values near 1 being highly directional [Garand, 1988]. Cell intensity is the

proportion of power in the spectrum associated with wavelengths between 20 ,and 40 km,

the typical size of convective cells [Agee and Dowell, 1976]. The maximum ring density

wavelength is the wavelength of the center of the annular ring in the power spectrum with

the maximum density, where the spectrum is divided into four rings. The spectral and

textural features are summarized in Table 1 where abbreviations used in the remainder of

the text are also given.

These texture measures are calculated for the five surface classes defined previously,

and for twelve cloud classes which include some of the basic cloud groups and mixtures of

these as observed in the data:

1. Low thin cloud over water (stratus);

2. Low thin cloud over ice (stratus);

3. Low thin cloud over land (stratus);

4. Low thick cloud, smooth texttue (stratus);

5. Low thick cloud, bumps or broken (stratocumulus);

6. Middle cloud rolls (broken, linear altostratus usually over a stratiform layer);

7. Broken middle cloud, not linear;

8. Middle thick cloud, smooth (altostratus, possibly over stratus);

9. Middle/high bumps (cirrocumulus or altocumulus);

10. High thick cloud with some middle cloud (broken cirrostratus over altostratus);

11. High thick cloud, smooth (cirrus or cirrostratus);

12. Cumulus.

The surface was included in classes 1-3 only because the clouds are thin and differed

primarily in albedo. Contributions from surfaces to cloud albedo or temperature in the

other classes was not significant enough to justify defining additional classes. Class 7 is

similar to class 6, but occurred at a higher altitude (lower temperature).
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3.3 Cell Size

The issue of cell size is important in that too large a cell may blur the boundaries

between classes, while too small a cell may not permit adequate description of the textural

and spectral features which distinguish between the classes. In addition, the larger the

number of pixels in each cell, the more reliable the statistical estimates will be. A number

of cell sizes have been used in previous cloud classifications; e.g. Ebert [1987] clustered

32 x 32 (128 kin) 2 AVHRR cells; Garand [1988] analyzed 64 x 64 (128 km) _ GOES cells;

Wu et al. [1985] examined 20 x 20 and 5 x 3 (20 km) 2 GOES-2, SMS-2, and GOES--4

cells in a study of rainfall; Weszka et al. [1976] used 64 x 64 LANDSAT-1 cells; Parikh

[1977] computed texture from 64 x 64 (205x355 km) NOAA-1 data; Haralick and

Shanmugam [1974] introduced many of the texture measures described with 64 x 64 (7.5

sq. mi) ERTS-1 data, Welch et al. [1988] used 512 x 512 (29 km) 2 Landsat cells. Cell

sizes seem to be chosen somewhat arbitrarily, although cell size has been chosen as a power

of two in those studies which employ the Fast Fourier Transform. The cell size used here

was based on a number of measures, both quantitative and qualitative.

In an attempt to quantify the effect of cell size, the texture measures were

calculated for the cloud and surface classes using cell sizes of 4 to 24 in increments of 2

with a separation distance of 1. Generally the texture values either remain essentially

unchanged or decrease/increase linearly for cells of size 24 down to 16. Cell sizes of 10 or

less often produce highly variable texture values. Values for cells of size 12 and 14 are

similar to those with sizes 16 and larger, but are more variable. A paired t-test for the

difference between cell sizes, with the null hypothesis that there is no difference between

the means, indicates that there appears to be a difference between cells of sizes 8, 16, and

larger (0.05 level of significance). In no cases can we conclude that there is a significant

difference between texture measures extracted from cells of sizes 14 and 16, 16 and 18, and
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14 and 18. Other pairs show results between these two extremes. These results are

reasonable if we wish to maximize the number of texture elements within a cell. Usually,

these basic texture elements exist on a smaller scale, for example open convective cells are

20-40 km and cloud rolls which have wavelengths of approximately 40 kin. Additionally,

Garand ,and Weimnan [1986] found that cloud texture is best measured over mesoscale

regions, on the order of 100-250 km square. The approximate lower limit in the above

analyses is 16x16 pixels, or (80 km) _ at the 5 km pixel mapping.

In addition to capturing the basic texture of a class, we are also interested in

ensuring that as many cells as possible in an image represent only one class. The pixels

within a cell containing a relatively uniform surface should exhibit a high degree of spatial

coherence and therefore have a relatively low standard deviation when compared to a cell

which contains a boundary between two classes that are widely separated in feature space.

To further investigate the effects of different cell sizes, a single-channel synthetic image was

created which consists of rectangular :'objects" of varying sizes and locations. The

minimum and maximum allowable sizes of objects are specified. An object is generated

whose dimensions are randomly chosen within the restricted range, and the class of the

object is randomly assigned (uniform random number generator). Regions are filled with

data for that class with a Gaussian random number generator based on a specified mean and

standard deviation. A grid of size 300 x 300 "pixels" was generated with subregions of

sizes 5 to 40 pixels, representing objects of sizes 25-200 km. Each of these areas was then

assigned a class number from 1 to 6. Means of cells of sizes 2, 6, 10, 14, 18, and 22

pixels square were then calculated and their relative frequency distributions were examined.

These are shown in Figure 5 for cell sizes of 6 to 22. Classes in the synthetic data set

with means of 10, 30, 50, 70, 90, and 110 (the standard deviation of each class is 1.5) are

well represented by means of 6x6 cells, and poorly represented by 22x22 cells. Cells with

means between the class means contain one or more boundaries. In all cases but the last,
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eachof theclassmeansis apparentin thehistogram,with mixing increasingwith increasing

cell size.

Cells representingsingleclasseswill exhibita meanvery nearthe classmean,and

will havea smallstandarddeviation. In determiningwhichcell size is optimal,thesecells

are locatedin thehistograms,andthechangein their relativefrequencywith changingcell

sizeis observed.We acceptas "pure"cellswhichhavestandarddeviationsno greaterthan

a smallpercentageof therangeof the data,asdefinedby the spatialcoherencemethodof

Coakleyand Bretherton[1982]. The relativefrequencyhistogramof thesecells is then

determined(Figure5, horizontalbars). Thefigure showsdifferencesbetweentile frequency

of purecells with meansthe sameas the classmeansand thefrequencyof all cells with

thosemeans.This differencetendsto increasewith increasingcell size,and is attributable

to cells whichcontaina mixtureof classesand thereforehavelarge standarddeviations.

This indicatesthat classificationswhichrely solelyon cell meansfor discriminatingbetween

classesare likely to havea higherror rate. Next,peaksin the histogramof purecells are

examinedto determinethe probabilitythat the groupingwouldoccurby chance;i.e., thal

the peak and surrounding intervals represents a uniform distribution. These probabilities are

given by a multinomial distribution function. This test of separability shows that two

classes are lost with cells of size 14, three are lost when cells of size 18 are used, and

none are represented by cells of size 22.

Based on these tests, a cell size of 10 pixels square is the approximate upper limit

of spatial coherence if an image is uniformly gridded. Conversely, a cell size of 16 seems

to be the approximate lower limit for texture analysis. This discrepancy implies that a joint

spectral-textural analysis based on the same cell size is inappropriate. For the following

texture analyses of pure classes, a cell size of 16 is used. Of course, these tests apply to

this data set only. See Welch et al. [1989b] for a discussion of resolution effects oil texture

measures.
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3.4 Choice of Features

There will undoubtedly be a high degree of redundancy in the spectral and textural

variables available for analysis. Benefits in terms of processing as well as interpretability

are gained by reducing this set of features to a set which includes only those containing the

greatest amount of discriminatory information for the classes of interest. To create this set

for cloud/surface analysis using the AVHRR imagery, correlations between features over all

classes were examined through principal components analysis (PCA), both unrotated and

rotated (Varimax). It is also possible to examine correlations between pairs of variables in

a correlation matrix, as has been done in Garand [1988] and Ebert [1987]. Since variables

which have large loadings on the same component generally have large correlations between

themselves, this method provides little additional information.

Principal components analysis was applied to both study areas, and the original nine

spectral features were reduced to four components with eigenvalues greater than 1.0.

Components with eigenvalues less than 1.0 account for less variance than the original

variable and are not retained. It is also recognized that beyond the first few componenls,

patterns may be essentially random. The representation of each component is listed in

Table 2. The first component represents channel 3, the 3-4 difference, and the ratio of

channel 3 to chamlel 1. Component I1 represents channels 4 and 5; channels 1 and 2 load

highly on component III; component IV represents only the 4-5 difference. The 2/1 ratio

loaded highly on component V, but its eigenvalue was only 0.5.

The discriminatory capability of features for all pairs of classes was also determined

using a divergence parameter, Fisher distance, defined as

Di_ _-
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where p_ is the mean for variable i oll class j or k and or, is tile corresponding standard

deviation. The divergence parameter measures lhe ability of the feature to differentiate

between classes and is computed for each variable and each pair of classes. The higher

divergence values correspond to greater usefulness in distinguishing between classes, where

D_j_, > 1.0 has discriminatory skill and D,,_ < 0.5 generally has poor separating power

[Garand, 1988]. The number of times a variable ranked first, second, etc., in Fisher

distance was tabulated in matrix form. Since PCA implies that of the nine original features

only three or four are statistically independent, the top four ranked features for each class

pair are most important. Channel 1 scores highest most often followed by channel 2 and

channel 4. The ratio features 2/1 and 3/1 and channel 3 follow in rank.

The number of features can now be reduced even further based on the joint results

of PCA and divergence calculations, Since channel l scored higher more often than

channel 2 and since they are highly correlated, channel 2 was eliminated and channel 1

retained. Similarly, channel 4 was retained and channel 5 eliminated. The channel 3

features were similar in discriminatory capability so any could be retained. These two

features are of parlicular interest in discriminating between water and ice clouds. The 4-5

difference did poorly in divergence ranking and would be of little value in this classification

application.

The same PCA and divergcnce parameter methods were applied to the spectral and

textural fealures calculated for the 16x16 pixel cells. PCA identified twelve components

with eigenvalues greater than 1.0. Table 3 lists these components and which variables they

represent. The first three components represent most of the variables, and provide an

obvious division of the three channels. This indicates that texture measures within a

channel vary together to a stronger degree than belween channels. This result is important

when considering the utility, of spectral and textural variables in classification studies.

The results of the divergence parameter testing for the lexture measures are given in
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Table 4. RG, VECTOR,XASM, MENT, ,andSD rankedhigh in all threechannels.

XASM, XENT, andXMEAN indicatethat directionalityis an importantcomponentto the

textureof someof the classes. With mostpairsof classes,the spectralMEAN and SD

featuresrankedhigherthantheGLD texturemeasures.

The angularsecondmoment,vectorstrength,andentropytexturemeasuresaremost

useful in surface/clouddiscrimination. Specifically,snow/water/landand cloud texture

differences were best described by angular second moment and entropy while ice and cloud

differences appeared in the vector strength and entropy measures. Entropy was also

important in discriminating between the cloud classes. Differences between ice

concentrations appeared in the Roberts gradient, entropy, and vector strength. Overall,

spectral features were most important for discriminating between surface types, this being in

agreement with the findings of Ebert [1987]. Entropy and angular second moment were

also chosen in the cloud texture analyses of Welch et al. [1988] and Ebert [1987, 1988].

When the divergence parameter ranking is considered for pairs of cloud classes only,

the nmnber of useful texture measures is reduced even further. Channel 3 texture measures

did not rank as highly as channels 1 and 4 measures. In the latter two channels, the

Roberts Gradient, vector strength, maximum angular second moment, mean entropy, and

standard deviation ranked highly most often and are used in the final analysis of cloud

patterns.

4. CLOUD PATTERNS

The cloud analysis methodology employed here includes cloud detection on the pixel

scale, a description of cloud patterns on a regional scale, and a classification of cloudy

pixels based on spectral and local textural characteristics. This procedure is summarized in

Figure 6. The cloud detection procedure is described in Parl 1 [Key and Barry, 1989], and

is based on the major steps of an International Satellite Cloud Climatology Project (ISCCP)
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testalgorithm[Rossowel al., 1985]. In the currentprocedure,surfaceidentificationwith

SMMRandSMMR-deriveddatasetsis thefirst step. Thealgoritlunthenproceedsthrough

a seriesof steps,eachof which is designedto deleclsomeof the cloudspresentin the

scene. Temporalvariability at eachpixel locationis examinedfor an initial detectionof

cloudyconditions,and clear sky compositemapsfor a five-dayperiodare produced. A

multispectralthresholdlest of theoriginaldatawith theclearsky compositesyieldsa final

cloud/no-cloudlabelingof theoriginaldata.

The two methodsof cloudpatternanalysisare presentedfor differentpurposes:in

onecase(left sideof Figure6), simplemeasuresareusedIo describethecharacteristicsof

cloudswhichoccur in regionswith ,'utificiallydefinedboundaries."l"ne size of the regions

is consistent with that used by the 1SCCP and some climate models. The second method is

presented as an attempt to eliminate the problems inherent in analyses that impose artificial

boundaries on cloud and surface patterns, that being the mixlure of different classes within a

single cell. It differs from other analyses that have incorporated texture analyses in that

only the cloudy pixeis are examined; surface pixels are identified in the cloud detection

step. Additionally, texture values are assigned to each pixel rather than to a grid cell, and

classification of pixels is performed. Other studies have utilized texture to identify both

surface and cloud classes, and have employed statistical classifiers to distinguish between

the two [e.g., Garand, 1988; Welch et al., 1988; Ebert, 1987]. In supervised classification

procedures, training patterns have often been comprised of mixtures of cloud and surface

types.

The bottom two boxes in Figure 6 identify future work in the automatic (i.e.,

computer) analysis of cloud patterns and their relationships with synoptic variables. As a

part of this goal, the compilation of statistics for cloud fraction, temperature, and number of

clouds per grid box is accomplished by the procedure shown in the left side of the figure.

However, the comparison of recognizable cloud morphologies (identified through texture
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,analysisshownin theright sideof thefigure)to griddedsynopticdatais the more complex

goal and will be the focus of future research.

4.1 Description of Cloud Within Regions

Mesoscale analysis is performed within regions that are (250 km) 2, 50x50 pixels, or

approximately 2.5 ° latitude by 2.5 ° longitude (Figure 2). Cloud properties are computed for

the cloud-only portion of each region and include overall cloud fraction, cloud fraction at

three levels, and connectivity measures. Low, middle, and high cloud amounts were

estimated as the percentage of pixels of temperature, T, such that if

1. T,-13 _ T < T, then low,

2. T.-39 < T _< T,-13 then middle,

3. T < T,-39 then high,

where T, is the surface temperature estimated by the clear sky composite value in AVHRR

chamnel 4.

Cloud connectivity features [Garand, 1988] can be extracted from a binary image

where each pixel is classed as either cloudy or clear. Cloud connectivity is smaller for

highly disconnected elements such as cumulus and larger for uniform stratus decks. Cloud

pixels connected only diagonally belong to a different entity, whereas cloud pixels

connected above, below, left, or right belong to the same cloud entity. In this manner, the

number of clouds and the number of background areas may be counted. If h,(i) and lk(j)

are the number of pixels in the cloud entity, i, and the background entity, j, respectively,

and if we rank the clouds and background areas from smallest to largest, the cloud

connectivity, CC, is defined as

CC = h¢(k) / (mAC), A_ > 0

where Ac is cloud fraction, m is the number of pixels in the image and k is tile cloud
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Z he(i)->mAc/ 2, i=l,k

If A_ = 0, CC = 1. Background connectivity is similarly defined as

BC = hb(k' ) [ [m(1-Ac)], Ao <> 1

where k' satisfies

Z hb(.j) > m(1-A_)/2, j=l,k'

ff Ac = 1, then BC = 1. Background connectivity is a good detector of holes and is low for

open cells such as those associated with convective patterns.

The proportion of thin cloud within a region was estimated from the number of

cloud pixels with a large difference between channels 3 and 4. Based on empirical studies

with the summer data, and following Saunders [1986] and Oiesen and Grassl [1985], if the

difference between these two charmels exceeds 3.5 K then the cloud is considered to be

thin. This applies to cloud at any height.

Finally, the three power spectrum measures, streakiness factor, cell intensity, and

maximum ring density wavelength, are useful in describing the structure of clouds.

Although in the divergence parameter analysis they were less useful in discriminating

between cloud classes than tile grey level difference measures, they are nonetheless

important descriptors and are easier to interpret. Additionally, the methods of feature

selection were based on "pure" classes, not the mixtures that will often occur within the

artificial boundaries imposed here.

Two of the parameters described above are shown in Figure 7 for the study area,

where regional values of low cloud fraction and cloud connectivity are mapped.
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4.2 Cloud Classification with Spectral and Textural Measures

The second method of examining cloud patterns is to classify each cloud pixel based

on its spectral and local textural characleristics. AVHRR channels 1, 3, and 4 are used as

the spectral features. Textural features include those given in Table 4 (underlined) and are

determined for each pixei in the following manner. A 16x16 pixel cell is moved across the

image shifting two pixels at a time. At each location, if the cell contains at least 80%

cloud, each texture measure is computed. The value of texture for the cell is assigned to

each pixel. With this method, each pixel may be assigned as many as 162/2=128 values.

The mean of these values is the value finally assigned to the pixel. While this method

does not eliminate the problem of mixtures of classes within a cell, it does provide a value

which is generally representative of the texture within the neighborhood, although when

edges between cloud classes are present, the value will be skewed. Figure 8 is an image of

the maximum angular second moment GLD measure in AVHRR channel 1 computed over

the study area. Large values (lighter grey shades) indicate smooth cloud layers and

correspond to both the low and middle level cloud decks seen in Figure 2. Similarly, the

darker areas correspond to inhomogeneous grey level pairs, primarily the mixtures of clouds

at all levels in cellular or linear patterns.

The maximum likelihood classifier (MLC) (cf., Ebert [1987], Garand [1988]) is

employed; the potential problems and alternatives are discussed in the next section. The

twelve cloud classes defined in Section 3.2 are used in the classification. A priori

probability for each class is 1.0. The classification results are shown in Figure 9 with

cloud classes as listed in Section 3.2. Only those cloud classes which occurred in the

image and were identified by the MLC are shown. Comparison of the results to other

classifications is complicated by the subjectivity inherent in defining cloud classes, which

are based on those observed in the imagery chosen as a function of both their textural and

spectral characteristics. Error analysis implies that there is a correc! classification, which at

J
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best is difficult to define. For this reason, the discussion is limited to a comparison of

Figure 9 to the manual classification shown in Figure 10. Differences are given in Table 5,

which is a contingency table showing the percent of pixels classified by each method inlo

each of the classes. Overall classification agreement is 68.3% with 10.3% of the image lef!

unclassified. The largest differences are due to (1) differences in the location of boundaries

between cloud systems, (2) labeling of low thin cloud over ice as low thick cloud by the

MLC (Kara Sea), (3) the MLC detecting a linear pattern in some middle cloud areas which

appeared broken in the manual interpretation, and (4) some low thick cloud areas labeled as

middle broken by the MLC. Additionally, the cumulus complex to the left of Novaya

Zemlya (Figures 2, 10) was missed completely by the MLC apparently due to a

combination of an insufficient munber of training s,'unples and the large number of non-

cloud pixels within the complex which decreased the number of cells for which texture was

computed. From these observations it can be seen that the classification results could be

improved by redefinition of some classes and by choosing more appropriate training areas.

However, given the complexity of the problem - how Io define and classify cloud patterns -

the areas in which this method performed poorly are perhaps more informative than tuning

the classifier to achieve a high classification accuracy.

Comparisons of the MLC results to other methods are also problematic. The

question of how this classification would compare to one utilizing only spectral features, for

example, is inappropriate because in such a case the cloud classes would have to be defined

without a textural component. In this case we examine the results of the principal

components and divergence parameter analyses to obtain some indication of the importance

of textural measures in distinguishing between classes. The question of how this

classification compares to one that uses texture for fixed grid cells is similarly complicated

by the fact that in the fixed grid method, some of the defined classes would include

mixtures of cloud types.
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4.2.1 Alternate Methodologies

Within this procedural framework of cloud pattern analysis starting from a map of

cloudy pixels, a number of other methods of textural analysis and classification could be

chosen. This is largely an image processing problem, and as such a detailed azmlysis of the

differences of using, for example, one classifier over another, are beyond the scope of this

paper. Still, it is useful to mention some of the alternatives which may effect the resulting

classification.

A maximum likelihood procedure is employed for the classification although

arguments could be made for using other procedures, for example, Euclidean distance [Ince,

1987] or fuzzy sets [Key et al., 1989] clustering algorithms. Since texture and spectral

response are not always equally important in identifying the cloud types, a classifier which

allows weighting the different sources of information for each class would be useful. Such

a method is proposed by Benediktsson and Swain [1989].

Related to the choice of classification method, the question of the normality of

distributions of features used in the MLC is an important one, and is addressed in detail by

Ince [1987]. When training areas comprise data from a large geographic area and/or time

period, a single informational class (e.g., land albedo) may consist of more than one

statistical class. This is certainly the case in the data set employed here, as a chi-square

goodness-of-fit test has shown for some of the spectral and textural features extracted over a

number of images in different locations and time. However, this does not necessarily mean

that the spectral or textural features themselves are not Gaussian in a single spatial and

temporal location. In fact, it is likely that the normal distribution is the correct population

distribution in such a restricted domain. This is the case in the study area of Figure 2,

where chi-square tests show distributions to be approximately nomlal.

The objective of the moving texture grid cell is to assign the most appropriate

---a
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texture value Io each pixei, one which best represenls the texture of the cloud class to

which the pixel belongs. Toward this end, other methods of extracting information from the

distribution of texture values for a given pixel may be more appropriate than the mean, for

example using the median or mode(s). In some cases these would provide more

representative values in that boundaries between overlapping cloud layers would be less

blurred, but the computational burden would increase. Ideally, texture would be computed

only for homogeneous regions, which of course require texture to be defined. In some

cases it may be appropriate to follow a region growing procedure based on temperature, for

example, where cloud patterns are grown out of homogeneous pixels which are spatially

connected (e.g., Kettig and Landgrebe [1976]). The texture of these regions would then be

determined, and if more than one characteristic texture is found, the region could be split.

5. CONCLUSIONS

The cloud analysis methodology presented here provides an alternative to the

traditional method of gridding an image, computing spectral and textural features for each

cell, and then classifying the cells. Simulations indicate that in such methods, cells small

enough to retain a high degree of spatial coherence may be too small to adequately measure

texture in the AVHRR GAC data set. Our method includes cloud detection on the pixel

scale, a description of cloud patterns on a regional scale, and a classification of cloud pixels

based on spectral and local textural characteristics. The cloud detection step involves

surface identification, tests of temporal variability at each pixel location, clear sky

compositing over a five-day period, and a multispectral threshold test of the original data

with the clear sky composites for a final cloud/no-cloud labeling.

From this point, two methods of cloud pattern analysis are presented. In one case,

simple measures are used to describe cloud types which occur in (250 kmy regions with

artificially defined boundaries. Such parameters as cloud fraction at three levels, cloud
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connectivity,andFouriermeasuresof cloudcoverstructurewithin theregionsarecomputed.

Thesedescriptorsmaybeusefulfor applicationswhichrequiregriddeddata;e.g.,in climate

models. The secondmethodis presentedasan attemptto eliminatethe problems inherent

in analyses which impose artificial boundaries on cloud and surface patterns, that being the

mixture of different classes within a single cell. Each pixel receives as its texture value the

mean value of all cloudy cells to which it belongs. Cloud pixels are then classified by

their spectral and textural features following a maximum likelihood procedure.

This methology differs from others which have incorporated cloud texture analyses

in two important ways: only the cloudy pixels are examined (surface pixels are identified in

the cloud detection step), and texture values are assigned to each pixet rather than to a grid

cell. In this manner, training classes can be defined based on texture, and do not need to

include mixtures of cloud and/or surface classes. However, the subjectivity inherent in

defining cloud types makes an objective assessment of the accuracy of the results difficult.

This problem is compotmded in the test data, where cloud systems are complex. With

classes defined in part by texture, comparisons to spectral-only classifications are not

appropriate. The test case resulted in 68% of the cloud pixe!s being correctly classified

when compared to a manual interpretation, although no redefinition of classes or training

areas was done to increase this value.

Correlation between spectral and textural features and the discriminatory capability

of each indicates that spectral features are most useful in discriminating between polar

surface and cloud classes but that a few texture measures, such as angular second moment,

vector strength, and entropy, as well as standard deviation, retrieve structural information of

clouds.

The classification results indicate that, as expected, cloud fields are organized into

recognizable mesoscale morphologies. An analysis of cloud morphology may in turn give

some indication of the physical state of the atmosphere. A detailed examination of the
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relationship between cloud patterns and synoptic variables requires greater spatial coverage

ttum examined here, as well as a pr(x:edure to correlate tile cloud patterns - derived with the

procedure presented above - to other meteorological data sets. Tile development of such a

procedure is the subject of future research.
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The conceptof grey level difference is used to compute the grey-level texture

statistics [Weszka et ai., 1976]. The grey level difference, g, is is computed for each pair

of pixeis in the cell. A histogram h0,,(g ) of grey level differences is then constructed for

each distance, d, and angle, 0, and used to compute various texture measures. Pixels to the

right and left of the pixel being examined are at an angle of 0°, those above and below are

at 90 °, the upper right and lower left are at 45 °, and the upper left and lower right are at

135 °. Texture may contain a directional component so that the histogram must be specified

as a function of angle as well as distance. Here, spectral values are quantized into 64 equal

intervals, based on the expected range in each channel (e.g. for chalmel 4, the minimum is

approximately 220 K, while the normal maximum is 295 K).

The texture measures calculated from the histograms, h0._(g), are the mean, contrast,

angular second moment, and entropy for the cell. These are defined as

MEAN(O,d) =
1 hoJg)

--- X g ........

64 g Ho._

CON(O,d) =

h0.d(g)

x_ .........
g H0.,,

ASM(0,d) =
ho.d(g)

X [ ........ ]_
g Ho,d

ENT(0,d) = X

g

g=0,1 ..... 63

ho,a(g) hojg)
......... In ........

Ho._l Ho,_

where Ho.d is the total number of grey level differences calculated for distance d ,'rod angle
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0. The mean, maximum, ,and range of these quantities over the four angles arc used in the

classification.

The area averaged Roberts gradient [c.g. Gonzalez and Winfz, 1977] is defined as

M-d N-d

Z Z [IB(m,n) - B(m+d,n+d)l

m=l n=l + IB(m+d,n) - B(m,n+d)ll
RG _ ..................................................

(M-d)(N-d)

where d is the separation distance across which RG is computed.

Vector strength considers the cell of pixels as a set of adjacent triangular planes

rather than a set of density points, and texture is then measured through the dispersion in

three-dimensional space of normals (vectors) to the cell planes. Triangular planes are

constructed by connecting midpoints of a pixel and two of its neighbors. The value of each

vertex of the triangle is the value of the corresponding pixel. An number of possibilities

for triangle construction exist; here the right and below neighbors are used, as well as the

above and left.

Let (li,m_,n_) be the direction cosines of the ith plane, which are calculated from the

coordinates of the normal vector to the plane (x,y,z) by

COS (X = x/w

COS B = y/w
cos 6 = z/w

where

w = _/(x 2 + y2 + z2)

The plane normal is calculated as the cross product of two vectors that are known to be on

the plane (translated to the origin), the most convenient being the two which form tile right

triangle of the plane.

The ratio of R to N where N is the number of plane normals ,and
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R = _/(E l,) _ + (E m_)_ + (Y_ nf

is the vector strength and has a value near unity for a smooth surface (e.g., stratus deck)

and near zero for an uneven surface (e.g., a cumulus cloud).

Two-dimensional Fourier analysis of spectral data may be used to obtain information

on the extended structure of a cloud field, especially where that structure consists of a

repeating pattern in either or both dimensions. The Fourier transform of the image f(k,l) is

K-1 L-1

Q(u,v) = 1/KL Y. E f(k,l) exp{-2i_(ku/K + iv/L)}
k=O 1=0

u =0, 1 ..... K-l, v = O, 1 ..... L-1

where K and L are the dimensions of the cell over which the transform is computed. The

power spectrum intensity, PS(u,v), is defined as the sum of the squared values of the real

and imaginary parts of the transform. Three features are used to summarize the power

spectrum: the streakiness factor, cell intensity, and the maximum ring density wavelength.

The streakiness factor, SF, detects directional patterns [Garand, 1988], is

SF = IE X uvPS(u,v)l / {[X Z u2PS(u,v)][X E v_PS(u,v)l]_/_

U V U V UV

u = 0,1 ..... K-l, v = 0,1 ..... K-l, (u,v) _ (0,0)

If the pattern has a north-south or east-west orientation, SF--0. To avoid this

problem, SF is also evaluated with the axes rotated 45 °, and the maximum SF is retained.

The cell intensity, CI, is the proportion of power in the spectrum associated with

wavelengths between 20 and 40 km and is defined as
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CI = E Z PS(_.)/ E E PS(u,v)

U V U V

u = 1,2 ..... K-l, v = 1,2 ..... K-l, 20<7__<40

_L = Kp/(u2+v 2)

where p is the spacing between observations (i.e., 5 km in the AVHRR/SMMR data set)

and PS(L) refers to all spectral density estimates with wavelengths, X, between 20 ,and 40

kin. More cellular patterns have higher CI values. The maximum ring density wavelength,

WAVE, is a scalar representation of the annular area of the spectrum with the maximum

density. The density within a ring with radii r,,r2, RDW, is given as

RDW(rt,r2) = X X PS(u,v)
u v

1"21 <_ U2+V 2 G r22

The power spectrum is divided into four rings, each K/4 in u,v dimensions, and the

wavelength of the center of the ring with the maximum density is retained.
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Figure 1. The two studyareas within the Arctic, one centered on the Kara and Barents

Seas and tile other covering much of the Canadian Archipelago and northern

Greenland.

Figure 2. Visible (AVHRR channel 1) image of a portion of study area 1 on July 1, 1984.

Novaya Zemlya is at upper center. Grid lines delineate (250 km) 2 regions.

Figure 3. The cloud only portion of Figure 2, as determined following the methodology

given in Part I, Key and Barry [1989]. AVHRR channel 1 (visible) data are shown.

Grid lines delineate 16x16 pixel cells, the size used in subsequent texture analyses.

Figure 4. Surface types corresponding to the area shown in Figure 2, from SMMR and

SMMR-derived data. Surface categories are l_md, snow/ice cap, sea ice (all

concentrations), open water, and a narrow coastal zone.

Figure 5. Effect of cell size on the computation of the mean of all cells over an

artificially-generated data set. Means of classes are 10, 30, 50, 70, 90, and 110.

The plots show the relative frequency of cells with various means, indicating

mixtures of classes. Horizontal bars show frequency of "pure" cells; i.e., cells

containing only one class.

Figure 6. Flow chart of the cloud analysis procedure. Cloud detection is addressed in Part

I, Key and Barry [1989]. The analysis of cloud patterns is done both for (250 km):

regions, and over the entire image utilizing spectral and local textural measures. In

the latter case, pixels are classified with a maximum likelihood procedure.

Figure 7. Low cloud fraction and cloud connectivity determined for each (250 km) 2 region

within the sludy area shown in Figure 2. Cloud connectivity (CC) is smaller for

highly disconnected cloud elements ,'rod larger for connected elements. By

definition, CC is set to 1 if overall cloud fraction within a region is 0.
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Figure 8. Textureof the cloudswithin the study areaas measuredby the maximum

angular second moment ill AVHRR channel 1. The procedure of moving windows

and averaging to obtain texture for each pixei was used. See text for details.

Lighter grey shades represent uniform clot,d decks.

Figure 9. Maximum likelihood classificalion of cloudy pixels based on their spectral and

local textural values. Cloud classes - 1: low thin cloud over water; 2: low lhin

cloud over ice; 4: low thick cloud smooth; 6: middle cloud rolls; 7: broken middle

cloud, not linear; 10: high/middle broken; 12: cumulus. Additionally, clear (bold

lines) and unclassified (U) areas are shown.

Figure I0. Manual classification of the cloud patterns shown in Figure 3. Classes are the

same as in Figure 9.
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Table1

Summaryof AVHRRspectralandtexturalmeasures.

Abbreviation

34

SINGLE PlXEL SPECTRAL MEASURES:

Channels 1, 2, 3 reflectance

Channels 3, 4, 5 brightness temperature

Ratios: 2/1, 3/1

Brightness temperature difference: channels 4-5

CH01, CH02, CH03

CHT3, CHT4, CHT5

RA21, RA31

DF45

CELL SPECTRAL/TEXTURAL MEASURES (channels 1, 3, 4).

Spectral Mean MEAN

Standard Deviation SD

Grey Level Difference (mean, maximum, range over 4 directions):

Mean

Contrast

Angular Second Moment

Entropy

Roberts Gradient

Vector Strength

Fourier Measures

Streakiness Factor

Cell Intensity

Maximum Ring Wavelength

MMEAN, XMEAN, RMEAN

MCON, XCON, RCON

MASM, XASM, RASM

MENT, XENT, RENT

RG

VECTOR

SF

CI

WAVE



Table2

Tile firs! four principalcomponentsof the nine spectral variables.
Underlined features are used in the final classification.

Component Features % Variance

1 Channel 3, 3-4 difference,

3/1 ratio 27.0

2 Channels 4 ,and 5 25.5

3 Channels 1 and 2 25.1

4 4-5 difference 12.0

TOTAL 89.6
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Table 3

First twelve principal components of the textural variables.
Subscripts refer to AVHRR channel numbers.

Component Features % Variance

1 Channel 4: all except those listed below 23.2

2 Channel 3: all except those listed below 19.4

3 Channel 1: all except those listed below 18.2

4 Channel 1: MEAN, VECTOR, MASM, XASM 7.0

5 Channel 3: RASM, RENT

Channel 4: RASM 4.9

6 Channel 1: RASM, RENT 3.9

7 MEAN 3 2.4

8 C11, RCONI,sf 2.2

9 SF3, WAVE 3 " 2.1

10 CI3 1.8

11 SF4, WAVEr, C11° 1.8

12 CI,L, WAVE4, WAVE3" 1.7

TOTAL

" Loading < 0.4; no large loading on any component.

88.6
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Table4

Texture variables retained after divergence parameter analysis.

Underlined features ranked highly for cloud class pairs and are used

in the final analysis. Superscripts refer to principal components.

Channel Texture Features

4

RG _, VECTOR', MMEAN _, XMEAN _, MASM _,

X.ASM 4, MENT 3, RENT _, XENT 3, SD 3

RG 2, VECTOR 2, MMEAN 2, XMEAN 2,

MASM 2, XASM a, MENT 2, XENT 2, SD 2

RG 1, VECTOR t, XASM I, MENT 1, SD _



Table5

Percentof tile studyarea(Figure2, includingsurfaceareas)predictedfor eachclass
by themaximumlikelihoodclassification(horizontal)shownin Figure9 andthemanual
interpretation(vertical)shownin Figure10. Seetext for classnumberreferences.
Cloud occupies 51.6% of the image. Also given is lhe percent correctly classified
in each class. Total percent correctly classified: 68.3.

Maxinmm Likelihood Class

Manual 1 2 4 6 7 10 l 2

Class

1 2.96 0.27 0.54 0.01 0.57 0.05 0.00

2 0.83 5.05 1.73 0.06 0.04 0.00 0.00

4 0.12 0.11 2.70 0.49 1.69 0.01 0.00

6 0.00 0.00 0.08 !0.04 1.40 0.56 0.00

7 0.01 0.00 0.49 4.82 6.80 0.56 0.00

10 0.00 0.00 0.03 1.79 0.09 7.67 0.00

12 0.00 0.02 0.00 0.00 0.01 0.00 0.00

Total (MLC) 3.92 5.45 5.57 17.21 10.60 8.85 0.00

% Correct 75.5 92.7 48.5 58.3 64.2 86.7 0.0
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Abstract. Several methods of deriving Arctic cloud information, primarily from
satellite imagery, have been intercompared. The comparisons help in establishing
what cloud information is most readily determined in polar regions from satellite
data analysis. The analyses for spring-summer conditions show broad agreement,
but subjective errors affecting some geographical areas and cloud types are
apparent. The results suggest that visible and thermal infrared data may be
insu_cient for adequate cloud mapping over some Arctic surfaces.

1. Introduction

There is wide recognition of the importance of accurate global cloud cover data for

climate research (Schiffer and Rossow 1983) and efforts to determine the character of

global cloud cover go back many decades (MacDonald 1938). Cloud observations

describe the fractional coverage of the sky (as observed from a point or, in the case of

satellite data, for a particular area), the appearance of the cloud (stratiform,

cumuliform) and height of the cloud base above the surface (see, for example, World

Meteorological Organization 1956). Cloud type is determined for three levels, low,
middle and high cloud. None of the existing global cloud climatologies provides

comprehensive information for the polar regions. Of the 15 distinct global cloud
climatologies reviewed by Hughes (I 984), only two (Beryland and Strokina ! 980, Sherr

et al. 1968) provide information about both poles while a further four have

information for one or other of the poles.

Polar cloud cover may play an influential role in ice-albedo feedback (Barry et al.

1984 b), which remains a crucial issue in the concern over CO 2 (and other greenhouse

gas) global warming effects. Shine and Crane (1984) used a thermodynamic sea ice

model to show that changes in Arctic cloudiness can have a marked effect on sea ice
conditions. It is therefore desirable that the character of Arctic cloud be more reliably

established. The most comprehensive cloud climatologies for the Arctic, by Vowinckel

(1962), Huschke (1969) and Gorshkov (1983), are derived primarily from surface

observations. They show a broad agreement over much of the Arctic in regard to the

seasonal cycle of total cloud amount, namely a winter minimum and a summer

maximum, as illustrated by Huschke's data in figure 1. However, there is less

agreement between the climatologies regarding the geographical distribution of cloud

cover, particularly in the case of low cloud in winter. As noted bv Crane and Barry

(C Copyright US Govcrnmeni 1987
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Figure I.

K. McGuffie et al.
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Figure 2 Mean total cloud amount (per cent) over the Arctic in (a) July (b) January according
to (i) Beryland and Strokina (1980) and (ii) Vowinckel (1962)
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(1984), for example, Voskresenskiy and Chukanin.(1959) show a much lower frequency
of occurrence of low clouds over the central Arctic Basin than does Vowinckel (1962).

There are also considerable differences between the mean maps of total cloud for

January and July presented by Vowinckel (1962) and those of Berlyand and Strokina

(1980) (figure 2). This may be due in part to the incorporation in the latter source of
some satellite observations.

Prior to the advent of satellites there were few observational studies of Arctic cloud.

There were no meteorological stations in the Canadian Arctic Archipelago and

northern Greenland until the late 1940s and, at most, there are only two or three

drifting stations on the pack ice at any one time. Moreover, accurate reporting of cloud

in the Arctic presents special problems for the observer. Loewe (1935, cited by Putnins

1970) noted that cloud observations in Greenland were not very precise, especially

during the polar night. Ice crystal precipitation may occur even in the absence of cloud

(Astapenko 1960). Even with present-day satellite radiance measurements, cloud cover

determination in polar regions remains difficult due to the overall similarity of

signatures over clouds and snow or ice in both visible and infrared wavelengths.
This study uses the results of three independent satellite-based analyses of Arctic

cloud conditions for selected periods in spring and summer. The cloud cover maps

were prepared using different techniques to identify and classify cloud, but all of the

results were primarily derived from Defense Meteorological Satellite Program

(DMSP) images. The scope of the intercomparison is determined by the availability of

overlapping time intervals analysed in the various studies. Although somewhat

limited, there is sufficient overlap to provide useful intercomparisons.

2. Analysis techniques
In this section we review the techniques used in the individual cloud analyses

(termed nephanalyses) as a prelude to the comparison of their results. Of the three

techniques which are discussed here, two are manual nephanalyses and the third is a

computer-based automatic algorithm. The table summarizes the data sources and

mapping techniques.

The automated algorithm is the US Air Force 3D-nephanalysis which has been

described by Fye (1978) and more briefly in Hughes and Henderson-Sellers (1985).

It categorizes cloud cover fraction and cloud level over the northern hemisphere on a

46 × 46 km grid. Over areas of snow and ice cover it is largely based on infrared imagery
and surface station data. Each 46 x 46 km grid box contains 64 'pixels' which are

reduced statistically to a single output every 3 hours (see Hughes and Henderson-

Sellers 1985). Modes are identified in the frequency distribution of infrared counts and

used to establish up to four clusters with thermally similar characteristics. An infrared

radiance temperature is determined for each cluster and used to decide on the presence
of cloud/no cloud based on a threshold method. The number of cloudy elements

(5.5 km) over the 46 km grid is then established and an average value assigned to that

grid point. Finally, surface and aircraft observations are integrated with the satellite

data, together with a continuity field comprising data from the previous analyses, to fill

in missing values. McGuffie (1985) uses the full spatial and temporal resolution of the

3D-neph data for the analyses reported here.

Technique 2 uses a manual classification of cloud characteristics for 3-day intervals

during April-June in both 1979 and 1980 for areas north of 70°N. The 3-day interval

sampling is considered to be sufficient to indicate the overall cloud climatology, given

the persistence of Arctic weather systems. Additional dates were also analysed to
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Characteristics of the data sources and classification procedures used for the three cloud

mapping techniques.

McGuffie 1985 Barry et aL 1986 Robinson et al. 1985

Data source 3D-neph product DMSP visible and DMSP visible and

from DMSP visible IR mosaic images IR orbital images

and 1R digital data

Pixel 5.5 km 5.4 km 2.7 km (supplementary

resolution 0-6 kin)

Data sampling ~45 km ~42 km (digitized ~ 190 km

grid interval from analysed

cloud maps)

Temporal 3-hourly data ~ 3-day ~ 3-day

sampling
Cloud

identification

criteria

Cloud

classification

Cloud/no-cloud

threshold set by

histogram analysis
of visible and IR

values over 64 pixels.

Grid point cloud
fraction is

box-averaged value

Total cover (per cent)

(3D-neph also gives

cloud type and

estimated heights

of base and top)

Visual recognition

(I) cloud-free areas,

stratiform/cumuliform

areas from visible image

(2) low/middle/high
cloud levels fiom

IR relative grey scale
and evidence of cloud

shadows

Cloud/cloud-free for
each level

mapped for synoptic
and mesoscale features

(typically/> ½-1 °

latitude in extent)

Visual recognition of
cloud and

surface features

Cloud-free, thin/

moderate/thick cloud

provide 10-day samples for each of eight mean sea-level pressure patterns identified by

a computer classification, as discussed by Barry et al. (1986, 1987). Shortwave band

(0-4-1.1/_m) DMSP images were used to identify areas of open conditions (largely

cloud free), stratiform (flat, featureless) cloud and 'cumuliform' (cells or rolls with

some vertical development showing texture on the images). Open conditions were

identified particularly on the basis of lead patterns in the ice being visible. The infrared

(10-5-12-5 pm) images were used, together with shortwave evidence of cloud shadows,

to divide the cloud into low, middle or high categories according to relative grey scale.

The 5.4 km resolution computer-rectified and gridded mosaic images allowed cloud

covered areas of extent >_,c. ½°-! ° latitude to be outlined. These maps were

subsequently digitized as cloud covered or cloud free for the three levels at each point

on a 42 x 42 km grid. The cloud type information was not analysed digitally and is not

discussed further here. The low cloud amounts for the April monthly average and

pressure-pattern average maps are weighted by 0.5 to eliminate an apparent bias in

April caused by low Sun angle and Arctic haze effects. This is discussed more fully in

Barry et al. (1987).

The second manual technique (Robinson etal. 1985, 1986 a) used available DMSP

direct readout images with 0-6km resolution for the Alaskan sector and 2.7km

resolution orbital strips elsewhere. Clouds were visually differentiated from snow and

ice, primarily by the characteristic large-scale features of the pack ice fields identified in

shortwave imagery. In addition, certain cloud fields, particularly those located in

cyclonic regions, were recognized by their characteristic shapes and patterns. These
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were often evident in both shortwave and infrared imagery. Three cloud categories

were recognized: thin cloud (surface features clearly recognizable but with reduced

contrast from cloud-free skies), moderate cloud (surface features marginally recogniz-

able) and thick cloud. Cloud cover was charted at about 3-day intervals from mid-May

to mid-August of 1977 and 1979 and digitized using a standard grid with an

approximate grid interval of 190 km.

Specific intercomparisons of the categories used by Robinson et al. (1985) and

Barry et al. (! 986) for 24 June and ! 3 July 1979 suggest that thick corresponds to cloud

areas with vertical development (cumuliform) and that moderate cloud would usually

be stratiform cloud at the middle level. A check for sample days on the possible

differences in interpretation that might arise as a result of using the 5.4 km rather than

the 2.7 km resolution imagery suggests little or no effect for the categories of open or
cumuliform cloud.

3. Intercomparison of results

We begin by examining the results for the monthly time scale. In general, the

analyses show more cloud over the Subarctic than over the Arctic Ocean. McGuffie's

data for May 1979 show that cloud decreases towards the pole with a slight increase

again near the centre ofthe basin, a phenomenon which was also reported by Robinson

et al. (1985). The zonal mean cloud amount determined by R.G. Crane (in Barry et al.

1984a) for May 1979 and May 1980, using a manual interpretation of large-scale

features on DMSP imagery, also illustrates this tendency (figure 3). Although May

1980 appears to have been slightly more cloudy, the general pattern has remained the

same. These results are all much lower than the climatology of Vowinckel (1962) who

describes cloud as increasing from North America towards the pole in May and the

other summer months, reversing the pattern of April. Possible reasons for this
contradiction are discussed further below.

Figure 4 shows the geographical distribution from the 3D-nephanalysis and the

manual interpretation of Barry et al. (1986) for the month of May 1979. The results for

the 3D-nephanalysis in figure 4 (a) refer only to the common dates available from the

manual analysis for May. The 3D-nephanalysis shows substantially less cloud over the

Arctic than the manual analysis. In fact, the 3D-nephanalysis agrees better, in terms of

c
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Crane

L_t_cle('N}

Figure 3. Zonal mean cloud amounts 58_-90°N in May showing mean values (Vowinckel
1962), manual analysis for 1979 and 1980 (Cranc in Barry et al.. 1984a) and 3D-
nephanalysis of 1979 (McGuffic 1985).



452 K. McGuffie et al.

]80 - 100% D 20 - 40%

@60-80% D 5-20%

D 40- 60% _'---_ 0- 5%

(a)

Figure 4. Mean total cloud amount for May 1979 (a) from 3D-nephanalysis data, per cent
(McGuffie 1985), sampled at 3-day inlervals and (b) from manual analysis of DMSP
images at 3-day intervals; per cent (Barry et al. 1986), and (c) middle level cloud from the
corresponding analysis to (h); per cent.
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(a)
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Figure 5. Total cloud amount over the Arctic for 10 April 1979 (a) from 3D-nephanalysis
(McGuffie 1985) and (b) from manual analysis (for 9 April) (Barry et al. 1986), and (c)
mean sea-level pressure analysis (millibars) for 10 April (Thorndike and Colony 1980).

cloud amount over the central Arctic, with the middle level cloud analysis of the

manual technique (figure 4 (c)). This result is probably due to the temperature structure

of the Arctic atmosphere in summer, when the near-surface layers are almost

isothermal and only middle and higher-level clouds may be different enough in

temperature to be separable from the ice surface. Both analyses agree that there is a

cloudiness maximum over the North Atlantic Ocean, associated with cyclone activity.

There is disagreement in the cloud cover over Greenland, where the 3D-nephanalysis

reports a cloud maximum in opposition to the other retrieval. This may be due to the

misidentification of the high ice plateau as cloud by the automated algorithm. The

mean surface pressure map for May 1979 indicates a large anticyclone over northern

Greenland which supports the case for a cloud-free area. Both analyses agree on the

presence of a relatively cloud-free area between east Greenland and Spitzbergen but, in

the Beaufort Sea, the 3D-nephanalysis shows less cloud than the manual technique.

Next, the results of the 3D-nephanalysis for individual daily cloud maps are

compared with those of the manual technique of Barry et al. 0986) for April. On these

maps, cloud data are not included from the 3D-nephanalysis over Greenland. The

12 GMT mean sea-level pressure maps from Thorndike and Colony (1980) incorpo-

rate measurements from 16 drifting buoys on the ice and up to 70 coastal and land

stations. Figures 5-7 show a generally good agreement in the patterns of total cloud
obtained by the 3D-nephanalysis and technique 2. In figure 5 for l0 April, 1979, with

high pressure over Greenland and the central Arctic, both analyses show an area of

cloud located over the pole and a relatively clear area north of the Arctic coastline, in

the Barents Sea and around Greenland. In comparison with figure 5, which resembles

the mean cloud pattern for April 1979, there is a very different cloud distribution for 15

April (figure 6 (a) and (b)). The pressure pattern features a high over the East Siberian
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(a)

K. McGuffie et al.

Figure 6. Tolal cloud amount over the Arctic 15 April 1979 (a) from 3D-nephanalysis
(McGuffie 1985) and (b) from manual analysis (Barry et al. 1986), and (c) mean sea-level
pressure analysis (millibars) for 15 April (Thorndike and Colony 1980).

Sea with easterly flow in the Barents Sea-Greenland sector. The Arctic Ocean has large

amounts of cloud on both April maps. In this case most Arctic coastal stations would

clearly be unrepresentative of the Arctic Ocean. The agreement between the analyses is

weaker in figure 7 (a) and (b), for 25 April, respectively, in part due to the l-day time
difference between them. The low pressure system in the Beaufort Sea is represented by

heavier cloud cover in the 3D-nephanalysis and the manual analysis, but there is

substantial disagreement over the Siberian sector of the Arctic.
Overall, the cloud charts obtained by manual analysis show a reasonable

agreement with the 3D-nephanalysis for the individual dates. One feature that appears
to be common to both analyses ofmean cloud for the month of April is the presence of
a maximum of cloud cover over the central Arctic Ocean. However, the manual

technique may exaggerate this due to the bias thought to be caused by pollution layers
at a time of very low solar elevation angle (Barry et al. 1986).

Finally, comparison is made between the 3D-nephanalysis and the manual

techniques of Robinson et al. (1985) for three dates in June 1979. Figure 8 for 10 June,

characterized by a Kara Sea low and East Siberian-Beaufort Sea high, shows quite

close agreement between the patterns obtained by Robinson et al. and the 3D-

nephanalysis, although the amounts depicted by the latter are not as high as might be

expected given the 'thick' cloud cover identified manually. Figure 9 for 13 June (East
Siberian Sea high, central Arctic low) and figure 10 for 15 June (low over Ellesmere

Island) refer to a low pressure system noted by Kukla (1984) that moved across the

Pole from the Taymyr Peninsula to the Canadian Arctic Archipelago, and contributed

to the onset of the summer snow melt regime on the pack ice. LeDrew (1987) analyses

the dynamic properties and vertical motion of this system. Figures 9 and 10 show a
considerable difference between the manual analyses and the 3D-nephanalysis. In both

cases, the latter shows considerably less cloud over the Arctic Ocean. This probably
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(a)

80 - 100% _ 20 - 40%

_60-60qk D 6-201k

Figure 7. Total cloud amount over the Arctic 25 April 1979 (a) from 3D-nephanalysis
(McGuffie 1985) and (b) from manual analysis (for 24 April) (Barry et al. 1986), and (c)
mean sea-level pressure analysis (millibars) for 25 April (Thorndike and Colony 1980).

reflects the influence of the lower tropospheric temperature structure on the 3D-

nephanalysis retrieval technique noted earlier. The two manual analyses for 15 June

are in general in good agreement for the main cloud-covered areas (low or middle on

figure 10 (c) corresponding with thick or medium on figure 10 (b)) and the areas ofclear

or high cloud (figure 10(c)) and clear or thin cloud (figure 10(b)). The analyses of
Robinson et al. (1985) for both dates show cloud bands associated with the low

pressure systems on figure 10 (d). Cloud models have been extensively developed for
mid-latitude weather patterns (Carleton 1984, for example), but for the Arctic

insufficient data are as yet available to establish reliable synoptic models (Fraser ! 973).

4. Discussion and conclusions

This comparison of satellite-derived Arctic cloud information produced by two
manual analysis techniques and 3D-nephanalysis (an automated algorithm) shows

that these methods are capable of capturing broad climatological features of the cloud

cover. However, the spatial patterns are subject to error due to surface effects that may

mislead the interpreter or bias the algorithm. This variability makes it difficult to assign

reliability estimates. None of the techniques discussed above has been able to portray
all of the characteristics of Arctic cloud cover. The automated IR threshold techniques

has problems in the Arctic because of the temperature structure of the lower
atmosphere, with a persistent surface inversion and warmer low-level clouds in winter
and a near-isothermal structure and extensive persistent stratiform clouds in summer.

Manual analysis is subjective and depends on the skill of the analyst, with decisions as
to the amount and nature of the cloud cover in complex situations inevitably differing

between analysts.
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I6o-,oo_ E--j2o-,o_
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(h)

Figure 8. Total cloud amount for l 0 June 1979 (a) from 3D-nephanalysis (McGuffie, 1985) and
(h) from DMSP imagery analysis (Robinson et al. 1985), and (c) mean sea-level pressure
analysis (millibars) for 10 June (Thorndike and Colony 1980).
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The estimates of Arctic cloudiness derived manually from satellite imagery are

lower than those derived from surface observations, as noted elsewhere by other

workers (Tanizer 1968, Malberg 1973). In part this reflects the statistical effect of the

scale of resolution of the data (Henderson-Sellers et al. 1981). Station observations of

cloud amount tend to be bimodal (presence, absence) whereas 5° grid boxes have a

J-shaped frequency distribution. This difference also involves the consequences of
what is often referred to as the 'observer seeing sides of clouds' problem. This bias may

be exaggerated in the Arctic by the high albedo surface. The multiple reflection of
shortwave radiation from clouds, and in spring from Arctic haze layers, will make it

more difficult for the ground observer to identify breaks in the cloud. It seems likely

that some of the difference between surface and satellite observations in the Arctic may

be due to the background contrast viewed from the surface and from a satellite. A

surface observer views a very low contrast, often milky blue sky, whereas the

interpreter of satellite photos is often presented with the high contrast offered by leads

in the ice cover, Calculations show that on clear days the presence of an aerosol layer

can increase the downward diffuse radiation by up to 60 per cent. Consequently, a thin

cloud layer over fractured sea ice may be recorded as broken cloud by a satellite image

analyst and yet be reported as 100 per cent cover by an observer at the surface.

The results of the analyses also suggest that in the earl), part of the spring-summer

season cloudiness is strongly influenced by weather systems. The melting of snow cover

on the Arctic sea ice, which is in part initiated during May and June by large-scale

warm air advection, is also associated with synoptic weather system activity (Robinson

et al. 1986 b). This subsequently enables local advection over the melting ice surfaces to

contribute to the increase in basin-wide cloudiness, particularly by the production of

the widespread summer-time Arctic stratus clouds.
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Total cloud amount for 13 June 1979 (a), (b) and (c) as for figure 8.
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Changes in the atmospheric circuiation and synoptic patterns, which are predicted

to occur in response to increasing CO2 concentrations for example, might be

manifested by changes in cloudiness in spring. Such changes would affect the surface

energy balance and most likely the timing of melt onset. Consequently, additional data

on the occurrence of Arctic clouds and on their optical properties are urgently required

if modelling studies of possible climate perturbations in the Arctic are to be successful.

Satellites potentially offer the best way of deriving cloud parameters in the polar

regions, but it remains for a consistent automatic classification procedure of high

latitude clouds to be developed. Our results suggest that this probably cannot be
achieved through the use of only visible and thermal infrared data, The manual

techniques take into account surface features visually identifiable through thin or

transient cloud cover. Over snow and ice, however, the 3D-nephanalysis algorithm

scheme relies principally on the infrared channel as noted above. An improved

automatic classification may need to incorporate these textural aspects of the scene, as

well as employing a !.6 or 3.7/tin channel to help resolve the mapping of low-level
stratiform water cloud.
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i 8o - ,oo,_ I-Y] 2o - 4o.,

(a)

_ Thick _ Thin

(b)

Figure 10. Totalcloudamountfor15June1979,(a)and(b)asforfigure8(theblankareain(b)
in 1he North Adantic represents missing data); (c) manual analysis (Barry et al, 1986) and
(d) mean sea-level pressure analysis (millibars) for 15June (Thorndike and Colony 1980).
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We welcome Curry's (! 988) reconsideration of the possible role of pollution aerosols in causing the springtime

obscuration of Arctic surfaces as viewed from space. The need for such further study was called for in our

paper, hereafter B87 (Barry et al., 1987). The role of Arctic haze in surface obscuration was also proposed

earlier, and sample radiation calculations made, by Shine et al. (1984). Curry proposes that ice crystals in the

lower troposphere may account for a significant fraction of the obscuration detected in our manual analysis of

April cloud cover from DMSP visible wavelength imagery. Several points raised in Curry's note deserve

further commentary.

The occurrence of ice crystal precipitation ('diamond dust') from cloudless skies in high latitudes during the
cold season is well known, because it is usually associated with optical phenomena (halos, sun pillars).

However, its frequency does not seem to be well documented in climate summaries. Wilson (1969, p. 86) states
that horizontal or slant visibility during such ice crystal haze is seldom reduced below 3 to 8 kin. Curry also

notes that the 'Ptarmigan' weather reconnaissance reports over the Beaufort Sea area suggest thai the haze in

these regions lacked the optical effects of ice.

Boundary-layer information of a different kind is now being provided by airborne lidar measurements in

the Arctic. Work in progress (Barry and Miles, 1988) shows that open leads in the sea ice during winter and

early spring give rise to large ice crystal plumes that can be detected by 1.06/_m iidar. These subvisible ice

crystal plumes appear to spread out extensively, but are also detected by lidar to penetrate the inversion.

Moreover, such moisture transfer is probably much more common than Raatz (1984) believes, based on our

mapping of lead occurrence. Work on the frequency and extent of such events is in progress, but this source

seems likely to be as important for ice crystal generation as large-scale advection of maritime polar air masses

proposed by Curry. Such airmasses seldom penetrate into the North American sector of the Arctic, as shown
by cyclone tracks (B87, Figure 3a).

Arctic haze is the subject of continued investigation through the Arctic Gas and Aerosol Sampling Program

(AGASP), the results of which are not discussed by Curry. The AGASP experiments during March 1983 and

April 1986 show tropospheric aerosol optical depths (at 0.5 pro)during aerosol events ranging up to 0.5 and

0-7 (Dutton et al., 1984, 1988). Surface measurements at Barrow for April 1986 give a mean value for the month

of 0-235. Hence, our assumed value of 0.3 for _ is not exaggerated as stated by Curry. Shaw's (1982) statement

that pollution aerosol is an order of magnitude lower than in mid-latitude source regions is also contradicted

by comparison of the AGASP-II results with measurements off the east coast of the United States during

pollution episodes (Schnell, 1987). Ruhnk¢ and Schnell (1987) indicate that the haze particles have a typical

diameter of 0-3/_m. Graphitic carbon is responsible for most of the absorption in the visible. They also report

a high single scattering albedo of 0.86, demonstrating the dominance of scattering in the total extinction

coefficient, but note that 'visible range and measured scattering coefficients in Arctic haze are not

unambiguously related to each other.' Herbert et al. (I 987) report that thick haze on 2-3 April 1986 obscured

the surface north of Barrow, Alaska, from 2 km altitude. The fraction of ice crystal aerosol in haze layers has

not yet been specifically determined; however, the AGASP-II measurements of backscatter relate only to dry

0196-1748/88/050539--02505.00
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aerosol (Schnell, ! 987). The relationship between haze layers and moisture content is shown by the AGASP-I!

flight data to be highly variable, some haze layers are moist, others dry (Ruhnke and 5chnell, 1987; Herbert et

al, 1987).
Curry correctly points out that the solar altitude and daylength figures stated in B87 (p. 425) for 80°N are in

error. The values of solar altitude given in our paper are in fact for 90°N.
in summary, measurements of Arctic haze support the optical depth value assumed for the radiation

calculation reported in B87. We agree, nonetheless, that tropospheric ice crystal clouds during late winter and

early spring may on occasion contribute to surface obscuration as viewed from space. If this is the case, such

layers might be included in cloud statistics as Curry proposes. A major source of such ice crystals, at least in

the western Arctic, appears to be the leads that form repeatedly in Arctic sea ice, rather than large-scale

advection of maritime polar air masses. Ice crystal plumes from open leads are detectable from airborne iidar

data and statistical analysis of their temporal and spatial occurrence is in progress. Clearly, various aspects of

the general problem of cloud detection in polar regions remain to be satisfactorily resolved.
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1. Introduction

Most General Circulation Model (GCM) sensitivity experiments show a

marked high latitude response to external forcing such as changes in the

solar constant, changes in atmospheric CO 2, or experiments with glacial

boundary conditions. The implication of all of these experiments is that

the polar regions may play a significant role in global climate and may also

be one of the fast places to demonstrate present or future climate change.

Climatic processes in the Arctic are dominated by the presence of sea

ice--primarily through the effect on the surface albedo and ocean-

atmosphere heat exchange--and by the polar cloud cover. Unfortunately,

neither sea ice nor cloud cover are particularly well treated in many

GCM's, and in the case of the cloud cover the observational data are also

very limited.

The role of cloud cover in climate has been discussed by Crane and

Barry (1984) with a particular focus on the polar regions. The Arctic cloud

cover is known to have a large seasonal variability increasing from about

40-60% in winter to 80-90% in summer (Huschke, 1969). This large increase

in summer is attributed, in part, to a shift in the cyclone tracks with an

increase in the number of low pressure systems that enter the Arctic Basin

at this time. It is also assumed that the rapid increase in spring/summer

cloud cover is partly due to decreasing ice concentration and increased

moisture availability. At present, however, we do not have sufficient

observational data to fully support these assumptions. The problems of the

satellite retrieval of cloud parameters is being examined in related studies

as part of this project; it is the purpose of the present report to



concentrate on the Arctic cloud cover simulations in the Goddard Institute

for Space Studies' (GISS) GCM.

2. The GISS GCM

The present study examines the Arctic cloud cover simulated by a

control run of the GISS Model II. This model, described in detail in

Hansen et al. (1983), has a horizontal resolution of 8 degrees latitude by 10

degrees longitude and 9 atmospheric layers (2 in the boundary layer, 5 in

the remainder of the troposphere and 2 in the stratosphere). Snow depth,

cloud cover and cloud height are computed in addition to the usual

atmospheric variables, and the model includes diurnal and seasonal cycles.

The ocean temperatures and the sea ice cover, however, are specified

climatologically.

A comparison of the observed and modelled synoptic climatology of the

Arctic Basin has been made by Crane and Barry (1988) using this model.

The observed pressure fields over the Arctic are compared with those

obtained from the model using a classification typing procedure developed

by Kirchhofer (1973) and a rotated principal components analysis for both

data sets. The analysis shows that the GISS model appears to give a quite

realistic simulation of both the spatial and temporal characteristics of the

sea level pressure field. Using the same synoptic climatology Barry et al.

(1987) suggest that synoptic controls may be an important factor

determining the observed cloud amount during the spring and early summer

of 1979 and 1980. Cloud cover is derived from the model data in such a

way that it is unlikely that a si.':nilar synoptic scale study would be valid in

this case (see below). Some idea of the relative importance of synoptic



scale advection versus local effects can be obtained, however, by an

examination of the monthly data at various levels in the model.

3. The GISS CGM Cloud Scheme

The GISS model calculates both large scale and convective cloud cover.

The actual cloud amounts are not saved on the 5-hourly output available

from the control run, but they can be inferred from the optical depth

which is saved for levels 1 to 7.

Convective Cloud

The convective cloud is obtained as a proportion of the mass of

saturated moist air rising from one layer to the next. The scheme

computes a cloud fraction which, at each time step, is compared to a

random number between 0 and 1. If the random number is less than the

cloud fraction, a cloud amount of 1 is assigned for that time step; if the

random number is greater than the cloud fraction a cloud amount of zero is

assigned. The GISS model, therefore, uses a cloud amount of zero or one

at each time step and simulates the effects of fractional cover within a

grid box by using full cloud cover for a fractional amount of time. This

gives similar results to computing separate radiation calculations using

fractional cloud for both the clear and cloudy portions of the grid box, but

saves computer time (Hansen et al., 1983).

Large-Scale Clouds

The large-scale cloud is given by the saturated fraction of the grid

box, assuming uniform absolute humidity and subgrid scale temperature

variation. As with the cumulus cloud, the fractional amount of cloud cover

is also compared to a random number and either zero or complete cloud
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cover assigned for the time step. No distinction is made between

convective and large-scale cloud in the present analysis but, in general,

large-scale clouds account for about 80% of the global cloud cover

generated by the model (Hansen et al., 1983).

Cloud Optical Depth

In place of the fractional cloud cover, the 5-hourly data give the

optical depth at each layer of a grid box in the presence of clouds. That

is, a cell has an optical depth of zero if no clouds are present and a value

greater than zero in the presence of clouds. The actua/optical depth is a

function of cloud type, temperature and depth in the atmosphere. For

large-scale cloud, if the layer temperature is less than 258 K the optical

depth is given as .33 to match the observational data of Plait (1975) which

indicates that cirrus clouds typically have an optical depth of 0.25 - 0.5.

Otherwise the optical depth is proportional to the pressure thickness of the

layer containing the cloud. For convective cloud the optical depth is .08

times the pressure thickness giving an optical depth of about 8 per 100 mb

of thickness. Where both large-scale and convection clouds are present in

a cell, the largest optical depth is used.

Determination of Clolad Cover Fraction

While the optical depth of cloud is obviously the important factor in

terms of radiative calculations, this is difficuIt to compare with

observations that are made in the form of fractional cloud cover. For the

present study, the fractional cloud cover is obtained from the optical depth

data by averaging over time.

The cloud optical depths are used to produce a binary map of cloud

cover at each level; that is, for optical depth > 0. cloud cover = 1, for
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opticaldepth = 0.cloud cover = 0. The binarygridsareused to produce

low, middle and totalcloud cover,low cloud iscloud inlevels1 or 2 (from

the surfacetoabout 850 rob),n'dddlccloud iscloud in levels3 and 4 (about

850 mb to 550 mb), and totalcloud includescloud atany level.The binary

gridsof low, middle, and totalcloud are averaged over 30 days (150 grids).

The time average gives a fractionalamount which issimilartothe original

monthly cloud cloverfractioncalculatedby themodel (Figures1 and 2).

4. Results

The monthly average cloud cover fraction for the Arctic north of 72°N

is shown in Figure 3a. This shows a seasonal cycle having a summer

maximum similar to that of Huschke (1969) (Figure 4), but with much lower

values. At the same time, the winter values are much higher in the model

showing that the seasonal range in the model cloud cover for the central

Arctic is much less than the observations would suggest. Figure 3b shows

the seasonal cycle for the area north of about 55°N and in this case the

cycle is reversed with less cloud in the summer months. This reversal in

the seasonal cycle is also demonstrated on a regional basis although both

the western Arctic (135°W - 135°E) and the Canadian Arctic (45°W - 135°W)

show very little seasonal variability (Figure 5), and most of the variation

occurs in the European sector (45°W-45°E) and the KaralLaptev Sea (45°E -

135°E). In these regions the seasonal cycle is again reversed with less

cloud in the summer months. These regions extend from approximately

g6°N to 55°N and should not, therefore, be compared with the regional data

of Huschke. The change in the seasonal cycle reflects the change in

cyclone tracks as they move further north in summer; the decrease in the



regional cloud fractions being matched by an increase in the central Arctic

fraction (Figures 3a and 5d). This seasonal variability is further illustrated

in the cloud maps for January and July (Figures 6 and 7). In January the

largest cloud fractions are found in the higher mid-latitudes primarily in

the North Pacific region and in the ?,,_EAtlantic, while in July the greater

cloud cover occurs north of about 70°N. The July distribution of total

cloud cover for the Arctic a_ees with Gorshkov (1980) in that there is a

relative maximum at high latitudes with the largest fractions being in the

north Atlantic region. However, there is a major difference in the Central

Arctic where Gorshkov shows 90% cloud cover while the model has a

relative minimum with less than 60% cloud cover. One should note,

however, that the model values for June and August are much higher

(Figure 5e) and that we are only examining one year of model output.

Comparing Figures 6a-c it is apparent that the regions of largest low,

middle and total cloud cover coincide suggesting that cloud cover is

controlled by the large scale processes. We should also note, however, that

the low cloud fraction is much higher than either Voskresenskiy and

Chukanin (1959) or Vowinckel and Orvig (1970) find for the Eastern Arctic.

Figures 7a-c for July, on the other hand, show the higher levels of low,

total and middle cloud coinciding in the western Arctic and North Atlantic,

but with an area of increased low cloud north and west of the Taymyr

Peninsula where ice concentrations have already begun to decrease in the

model.

The minimum ice extent in the model occurs in September with low ice

concentrations (less than 30%) in the southern Barents/'Kara Sea and along

the Beaufort Coast. Ice concentrations of less than 50% are found along
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theSiberian coast and ice concentrations between 75% and 85% are found in

the Beaufort up to about 78°N and the Barents Sea up to about 86°N. The

September cloud cover shows a general decrease over the July figures with

the largest cloud cover fractions being found further south once more. For

the most part there is a general agreement between the low, middle and

total cloud, but again there are areas which have a relative maximum in

low cloud and a minimum in middle cloud corresponding to the regions of

low ice concentration in the Barents/Kara Sea and, to some extent, along

the Beaufort Coast. There are extensive areas of low cloud in the

Canadian Arctic and the East Siberian Sea, but these also coincide with

regions of extensive middle cloud as well.

Although it cannot be demonstrated conclusively, these results do

suggest that the decreased ice concentration in the Seasonal Sea Ice Zones

of the Eastern Arctic and along the Beaufort Coast do contribute to

increased low level cloudiness in the model. For the most pan, however,

the Arctic cloud cover does appear to be controlled by the larger scale

processes.

5. Summary and Conclusions

The GISS model cloudiness in the polar region of the Northern

Hemisphere demonstrates the seasonal variability that would be expected

from the observational data, but at a much reduced range for the Central

Arctic. As with the observational data, the zone of maximum cloud cover

moves north in the summer, but actual amounts are less than expected by

about 10-20%.

Barry et al. (1987) suggest that there is a strong synoptic control on



cloudcoveramountsin theArctic which is supported by the more detailed

microphysical studies of Jayaweera (1982) who also suggests that the lower

stratus layers may be formed by the lifting of fog over sea ice, while the

upper layers are a response to large-scale southerly flow. In the case of

the GISS model, while most of the cloud cover would appear to be due to

large-scale processes, there is some evidence that reduced ice concentration

in summer does give rise to some increased low level cloud on a limited

regional basis. One final consideration is that during the early summer,

when the model is already showing too little cloud in the Arctic, there is

also a tendency for mid-latitude aerosols to be transported to the Arctic

resulting in the presence of optically thick Arctic Haze (Rahn, 1985). This

again may have some further effect on the surface and lower tropospheric

energy balance in the Arctic.
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Figure 2. January (a) and July (b) Total Cloud Cover From the

Present Study (shaded areas have greater than 70% cloud cover)
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Figure 3. Seasonal Cycle of Cloud Cover
for the Arctic North of 72N (a) and

North of 65N (b)
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Figure 5. Monthly Cloud Cover (GISS Model) For a) the Western Arctic,

b) Canadian Arctic, c) European Arctic, d) Laptev Sea, and

e) the North Pole
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Figure 6. Mean January Cloud Cover From the GISS GCM.
(a) Total Cloud (shaded areas = greater than 70% cloud)

(b) Low Cloud (shaded areas = greater than 60% cloud)

(c) Middle Cloud (shaded areas = greater than 40% cloud)



Figure 6. Continued



Figure 7. MeanJuly Cloud Cover From the GISSGCM.
(a) Total Cloud (shaded areas _ greater than 70%cloud)
(b) Low Cloud (shaded areas = greater than 60%cloud)
(c) Middle Cloud (shaded areas _ greater than 40%cloud)



Figure 7. Continued
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Figure 8. Mean September Cloud Cover From the GISS GCM.

(a) Total Cloud (shaded areas = greater than 70% cloud)

(b) Low Cloud (shaded areas = greater than 60% cloud)

(c) Middle Cloud (shaded areas = greater than 40% cloud)



Figure 8. Continued
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